CSE 421 Algorithms

Richard Anderson Lecture 19 Dynamic Programming

Announcements

- Homework Deadlines
 - HW 7: Wednesday, November 18
 - HW 8: Wednesday, November 25
 - HW 9: Friday, December 4
 - HW 10: Friday, December 11
- Final Exam
 - Monday, December 14, 2:30-4:20 pm

One dimensional dynamic programming: Interval scheduling Opt[j] = max (Opt[j – 1], w_j + Opt[p[j]))

Two dimensional dynamic programming

K-segment linear approximation Opt_k[j] = min_i { Opt_{k-1}[i] + $E_{i,j}$ } for 0 < i < j

Two dimensional dynamic programming

Subset sum and knapsack

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + v_j)

Aside: Negative weights in subset sum

- Alternate formulation of Subset Sum dynamic programming algorithm
- Sum[i, K] = true if there is a subset of {w₁,...w_k} that sums to exactly K, false otherwise
- Sum [i, K] = Sum [i -1, K] OR Sum[i 1, K w_i]
- To allow for negative numbers, we need to fill in the array between $K_{\textit{min}}$ and $K_{\textit{max}}$

Dynamic Programming Examples

- Examples
 - Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - Compare with HW problem 6, Pg 317
 - String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

• Maximize income in placing billboards

 $-b_i = (p_i, v_i), v_i$: value of placing billboard at position p_i

• Constraint:

- At most one billboard every five miles

• Example

 $-\{(6,5), (8,6), (12, 5), (14, 1)\}$

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Input $b_1, ..., b_n$, where $b_i = (p_i, v_i)$, position and value of billboard i

Solution

j = 0; // j is five miles behind the current position // the last valid location for a billboard, if one placed at P[k] for k := 1 to n while (P[j] < P[k] - 5) j := j + 1; j := j - 1; Opt[k] = Max(Opt[k-1], V[k] + Opt[j]);

String approximation

 Given a string S, and a library of strings B = {b₁, ...b_m}, construct an approximation of the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
 - MisMatch(i, j) number of mismatched characters of b_j, when aligned starting with position i in s.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Target string $S = s_1 s_2 ... s_n$ Library of strings $B = \{b_{1,...,b_m}\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Opt[k] = fun(Opt[0],...,Opt[k-1])

 How is the solution determined from sub problems?

Target string $S = s_1 s_2 ... s_n$ Library of strings $B = \{b_{1,...,b_m}\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Solution

for i := 1 to n $Opt[k] = Opt[k-1] + \delta;$ for j := 1 to |B| $p = i - len(b_j);$ $Opt[k] = min(Opt[k], Opt[p-1] + \gamma MisMatch(p, j));$

Longest Common Subsequence

- C=c₁...c_g is a subsequence of A=a₁...a_m if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

ocurranec	attacggct
occurrence	tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

Align sequences with gaps

CAT TGA AT

CAGAT AGGA

- Charge δ_{x} if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with γ_{xx} = 0 and δ_x > 0

LCS Optimization

- $A = a_1 a_2 \dots a_m$
- $B = b_1 b_2 \dots b_n$
- Opt[j, k] is the length of LCS(a₁a₂...a_j, b₁b₂...b_k)

Optimization recurrence

If
$$a_j = b_k$$
, Opt[j,k] = 1 + Opt[j-1, k-1]

If $a_j != b_k$, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_{x} if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Opt[j, k] =

Let $a_j = x$ and $b_k = y$ Express as minimization

Dynamic Programming Computation

Code to compute Opt[j,k]

Storing the path information

A[1m], B[1r)]	_		
for i := 1 to m	Opt[i, 0] :=	0; <u> </u>		
for j := 1 to n	Opt[0,j] := 0	r;		
Opt[0,0] := 0;				
for i := 1 to m			a_1a_m	
for j	:= 1 to n			
if A[i] = B[j] { Opt[i,j] := 1 + Opt[i-1,j-1]; Best[i,j] := Diag; }				
else if Opt[i-1, j] >= Opt[i, j-1]				
{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }				
else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }				

How good is this algorithm?

 Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

 The computation can be done in O(m+n) space if we only need one column of the Opt values or Best Values

 The algorithm can be run from either end of the strings

Computing LCS in O(nm) time and O(n+m) space

- Divide and conquer algorithm
- Recomputing values used to save space

Divide and Conquer Algorithm

Where does the best path cross the middle column?

 For a fixed i, and for each j, compute the LCS that has a_i matched with b_i

Constrained LCS

- LCS_{i,i}(A,B): The LCS such that
 - $-a_1,...,a_i$ paired with elements of $b_1,...,b_j$
 - $-a_{i+1},...,a_m$ paired with elements of $b_{j+1},...,b_n$

• LCS_{4,3}(abbacbb, cbbaa)

A = RRSSRTTRTSB=RTSRRSTST

Compute $LCS_{5,0}(A,B)$, $LCS_{5,1}(A,B)$,..., $LCS_{5,9}(A,B)$

A = RRSSRTTRTSB=RTSRRSTST

Compute $LCS_{5,0}(A,B)$, $LCS_{5,1}(A,B)$,..., $LCS_{5,9}(A,B)$

j	left	right
0	0	4
1	1	4
2	1	3
3	2	3
4	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

Computing the middle column

- From the left, compute LCS(a₁...a_{m/2},b₁...b_j)
- From the right, compute $LCS(a_{m/2+1}...a_m, b_{j+1}...b_n)$
- Add values for corresponding j's

• Note – this is space efficient

Divide and Conquer

- $A = a_1, ..., a_m$ $B = b_1, ..., b_n$
- Find j such that
 - LCS $(a_1...a_{m/2}, b_1...b_j)$ and – LCS $(a_{m/2+1}...a_m, b_{j+1}...b_n)$ yield optimal solution
- Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that T(m,n) <= 2cmn

Memory Efficient LCS Summary

- We can afford O(nm) time, but we can't afford O(nm) space
- If we only want to compute the length of the LCS, we can easily reduce space to O(n+m)
- Avoid storing the value by recomputing values
 - Divide and conquer used to reduce problem sizes