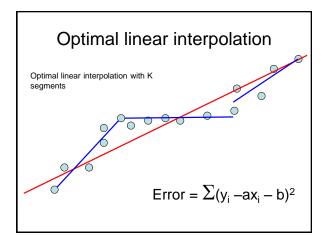
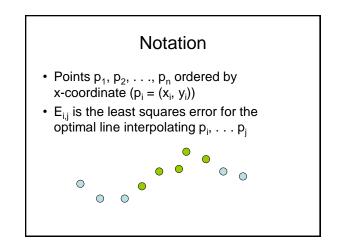
CSE 421 Algorithms

Richard Anderson Lecture 18 Dynamic Programming

Announcements

- Homework Deadlines
 - HW 6: Friday, November 13
 - HW 7: Wednesday, November 18
 - HW 8: Wednesday, November 25
 - HW 9: Friday, December 4
 - HW 10: Friday, December 11





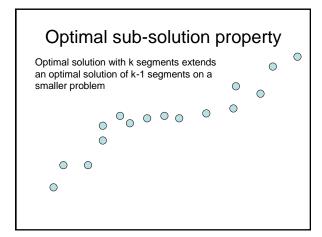
Optimal interpolation with k segments

- Optimal segmentation with three segments
 Min_i {E_{1,i} + E_{i,i} + E_{i,n}}
 - O(n²) combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

$Opt_k[j]$: Minimum error approximating $p_1...p_j$ with k segments

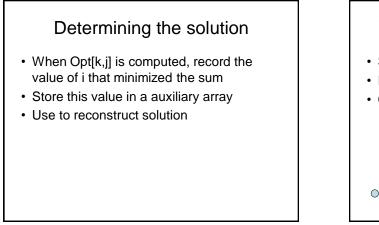
Express Opt_k[j] in terms of Opt_{k-1}[1],...,Opt_{k-1}[j]

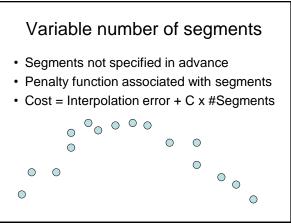
$$Opt_{k}[j] = min_{i} \{ Opt_{k-1}[i] + E_{i,j} \} for 0 < i < j$$



Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n





Penalty cost measure

Opt[j] = min(E_{1,j}, min_i(Opt[i] + E_{i,j} + P))



- Let $w_1, \ldots, w_n = \{6, \, 8, \, 9, \, 11, \, 13, \, 16, \, 18, \, 24\}$
- Find a subset that has as large a sum as possible, without exceeding 50

Adding a variable for Weight

- Opt[j, K] the largest subset of $\{w_1,\,...,\,w_j\}$ that sums to at most K
- {2, 4, 7, 10}
 - Opt[2, 7] =
 - Opt[3, 7] =
 - Opt[3,12] =
 - Opt[4,12] =

Subset Sum Recurrence

 Opt[j, K] the largest subset of {w₁, ..., w_j} that sums to at most K

Subset Sum Grid Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j) 4

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Subset Sum Code

 $\begin{array}{l} \mbox{for } j=1 \mbox{ to } n \\ \mbox{for } k=1 \mbox{ to } W \\ \mbox{Opt}[j,k]=max(Opt[j-1,k], Opt[j-1,k-w_j]+w_j) \end{array}$

Knapsack Problem

- · Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items {I₁, I₂, ... I_n}
 - Weights $\{w_1, w_2, ..., w_n\}$
 - Values {v₁, v₂, ..., v_n}
 - Bound K
- Find set S of indices to:

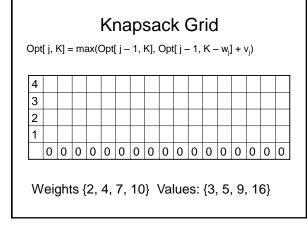
– Maximize $\sum_{i \in S} v_i$ such that $\sum_{i \in S} w_i <= \mathsf{K}$

Knapsack Recurrence

Subset Sum Recurrence:

 $Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)$

Knapsack Recurrence:



Dynamic Programming Examples

• Examples

- Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
- Linebreaking with hyphenation
 Compare with HW problem 6, Pg 317
- String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards

 b_i = (p_i, v_i), v_i: value of placing billboard at position p_i
- Constraint:
 - At most one billboard every five miles
- Example
 - {(6,5), (8,6), (12, 5), (14, 1)}

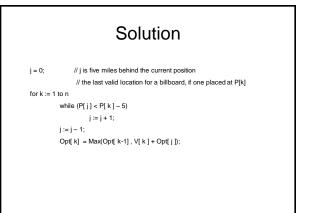
Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Input $b_1, \, ..., \, b_n$, where $b_i = (p_i, \, v_i)$, position and value of billboard i

Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from sub problems?



Input $b_1, \, \dots, \, b_n$, where $b_i = (p_i, \, v_i)$, position and value of billboard i

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.

Penalty Function

 Pen(i, j) – penalty of starting a line a position i, and ending at position j

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

• Key technical idea – Number the breaks between words/syllables

String approximation

 Given a string S, and a library of strings B = {b₁, ...b_m}, construct an approximation of the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- + Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
 MisMatch(i, j) number of mismatched characters of b_j, when aligned starting with position i in s.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Target string $S = s_i s_2...s_n$ Library of strings $B = \{b_1...,b_m\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from sub problems?

Target string S = s,s₂...s_n Library of strings B = $\{b_1...,b_m\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Solution

for i := 1 to n $\begin{array}{l} Opt[k] = Opt[k-1] + \delta;\\\\ for j := 1 to |B|\\ p = i - len(b_j);\\\\ Opt[k] = min(Opt[k], \ Opt[p-1] + \gamma \ MisMatch(p, j)); \end{array}$