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CSE 421 

Algorithms 

Richard Anderson 

Lecture 17 

Dynamic Programming 

Dynamic Programming 

• Weighted Interval Scheduling 

• Given a collection of intervals I1,…,In with 

weights w1,…,wn, choose a maximum 

weight set of non-overlapping intervals 
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Optimality Condition 

• Opt[ j ] is the maximum weight 

independent set of intervals I1, I2, . . ., Ij 

• Opt[ j ] = max( Opt[ j – 1], wj + Opt[ p[ j ] ]) 

– Where p[ j ] is the index of the last interval 

which finishes before Ij starts 

 

 

Algorithm 

MaxValue(j) = 

 if j = 0 return 0 

   else 

  return max( MaxValue(j-1),                                                               

             wj + MaxValue(p[ j ])) 

 

Worst case run time: 2n 

A better algorithm 

M[ j ] initialized to -1 before the first recursive call for all j 

 

MaxValue(j) = 

 if j = 0 return 0; 

    else if M[ j ] != -1 return M[ j ]; 

    else  

  M[ j ] = max(MaxValue(j-1), wj + MaxValue(p[ j ])); 

  return M[ j ];                                                        

  

Iterative Algorithm 

Express the MaxValue algorithm as an  

iterative algorithm 

 

MaxValue { 

 

 

 

 

 

 

 

} 
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Fill in the array with the Opt values 

Opt[ j ] = max (Opt[ j – 1], wj + Opt[ p[ j ] ])  
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Computing the solution 

Opt[ j ] = max (Opt[ j – 1], wj + Opt[ p[ j ] ])  

Record which case is used in Opt computation 
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Dynamic Programming 

• The most important algorithmic technique 

covered in CSE 421 

• Key ideas 

– Express solution in terms of a polynomial 

number of sub problems 

– Order sub problems to avoid recomputation 

Optimal linear interpolation    

Error = S(yi –axi – b)2 

What is the optimal linear 

interpolation with three line segments 

 

What is the optimal linear 

interpolation with two line segments 
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What is the optimal linear 

interpolation with n line segments 

 

Notation 

• Points p1, p2, . . ., pn ordered by                

x-coordinate (pi = (xi, yi)) 

• Ei,j is the least squares error for the 

optimal line interpolating pi, . . . pj 

Optimal interpolation with two 

segments 

• Give an equation for the optimal interpolation of 

p1,…,pn with two line segments 

 

 

 

 

 

• Ei,j is the least squares error for the optimal line 

interpolating pi, . . . pj 

 

Optimal interpolation with k 

segments 

• Optimal segmentation with three segments 

– Mini,j{E1,i + Ei,j + Ej,n} 

– O(n2) combinations considered 

• Generalization to k segments leads to 

considering O(nk-1) combinations 

Optk[ j ] : Minimum error approximating 

p1…pj with k segments 

How do you express Optk[ j ] in terms of  

Optk-1[1],…,Optk-1[ j ]? 

Optimal sub-solution property 

Optimal solution with k segments extends 

an optimal solution of k-1 segments on a 

smaller problem 
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Optimal multi-segment interpolation 

Compute Opt[ k, j ] for 0 < k < j < n 

 

for j := 1 to n 

    Opt[ 1, j] = E1,j; 

for k := 2 to n-1 

    for j := 2 to n 

 t := E1,j 

 for i := 1 to j -1 

     t = min (t, Opt[k-1, i ] + Ei,j) 

 Opt[k, j] = t 

Determining the solution 

• When Opt[k,j] is computed, record the 

value of i that minimized the sum 

• Store this value in a auxiliary array 

• Use to reconstruct solution 

Variable number of segments 

• Segments not specified in advance 

• Penalty function associated with segments 

• Cost = Interpolation error + C x #Segments 

Penalty cost measure 

• Opt[ j ] = min(E1,j, mini(Opt[ i ] + Ei,j + P)) 


