
1

CSE 421

Algorithms

Richard Anderson

Lecture 17

Dynamic Programming

Dynamic Programming

• Weighted Interval Scheduling

• Given a collection of intervals I1,…,In with

weights w1,…,wn, choose a maximum

weight set of non-overlapping intervals

4

6

3

5

7

6

Optimality Condition

• Opt[j] is the maximum weight

independent set of intervals I1, I2, . . ., Ij

• Opt[j] = max(Opt[j – 1], wj + Opt[p[j]])

– Where p[j] is the index of the last interval

which finishes before Ij starts

Algorithm

MaxValue(j) =

 if j = 0 return 0

 else

 return max(MaxValue(j-1),

 wj + MaxValue(p[j]))

Worst case run time: 2n

A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =

 if j = 0 return 0;

 else if M[j] != -1 return M[j];

 else

 M[j] = max(MaxValue(j-1), wj + MaxValue(p[j]));

 return M[j];

Iterative Algorithm

Express the MaxValue algorithm as an

iterative algorithm

MaxValue {

}

2

Fill in the array with the Opt values

Opt[j] = max (Opt[j – 1], wj + Opt[p[j]])

4

7

4

6

7

6

2

Computing the solution

Opt[j] = max (Opt[j – 1], wj + Opt[p[j]])

Record which case is used in Opt computation

4

7

4

6

7

6

2

Dynamic Programming

• The most important algorithmic technique

covered in CSE 421

• Key ideas

– Express solution in terms of a polynomial

number of sub problems

– Order sub problems to avoid recomputation

Optimal linear interpolation

Error = S(yi –axi – b)2

What is the optimal linear

interpolation with three line segments

What is the optimal linear

interpolation with two line segments

3

What is the optimal linear

interpolation with n line segments

Notation

• Points p1, p2, . . ., pn ordered by

x-coordinate (pi = (xi, yi))

• Ei,j is the least squares error for the

optimal line interpolating pi, . . . pj

Optimal interpolation with two

segments

• Give an equation for the optimal interpolation of

p1,…,pn with two line segments

• Ei,j is the least squares error for the optimal line

interpolating pi, . . . pj

Optimal interpolation with k

segments

• Optimal segmentation with three segments

– Mini,j{E1,i + Ei,j + Ej,n}

– O(n2) combinations considered

• Generalization to k segments leads to

considering O(nk-1) combinations

Optk[j] : Minimum error approximating

p1…pj with k segments

How do you express Optk[j] in terms of

Optk-1[1],…,Optk-1[j]?

Optimal sub-solution property

Optimal solution with k segments extends

an optimal solution of k-1 segments on a

smaller problem

4

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j := 1 to n

 Opt[1, j] = E1,j;

for k := 2 to n-1

 for j := 2 to n

 t := E1,j

 for i := 1 to j -1

 t = min (t, Opt[k-1, i] + Ei,j)

 Opt[k, j] = t

Determining the solution

• When Opt[k,j] is computed, record the

value of i that minimized the sum

• Store this value in a auxiliary array

• Use to reconstruct solution

Variable number of segments

• Segments not specified in advance

• Penalty function associated with segments

• Cost = Interpolation error + C x #Segments

Penalty cost measure

• Opt[j] = min(E1,j, mini(Opt[i] + Ei,j + P))

