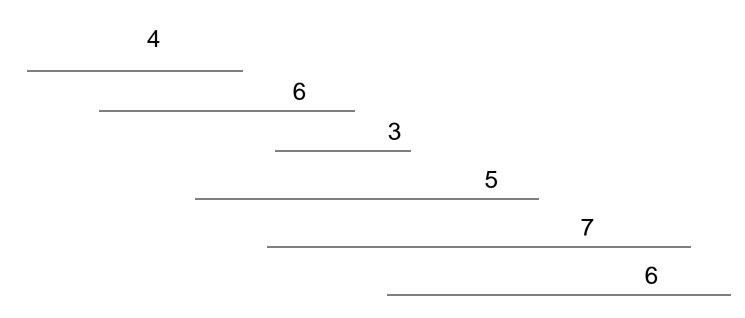
CSE 421 Algorithms

Richard Anderson Lecture 17 Dynamic Programming

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I₁,...,I_n with weights w₁,...,w_n, choose a maximum weight set of non-overlapping intervals



Optimality Condition

- Opt[j] is the maximum weight independent set of intervals I₁, I₂, . . ., I_i
- Opt[j] = max(Opt[j 1], w_j + Opt[p[j]))
 - Where p[j] is the index of the last interval which finishes before I_j starts

Algorithm

MaxValue(j) = if j = 0 return 0 else return max(MaxValue(j-1), w_i + MaxValue(p[j]))

Worst case run time: 2ⁿ

A better algorithm

M[j] initialized to -1 before the first recursive call for all j

```
MaxValue(j) =
    if j = 0 return 0;
    else if M[ j ] != -1 return M[ j ];
    else
        M[ j ] = max(MaxValue(j-1), w<sub>j</sub> + MaxValue(p[ j ]));
        return M[ j ];
```

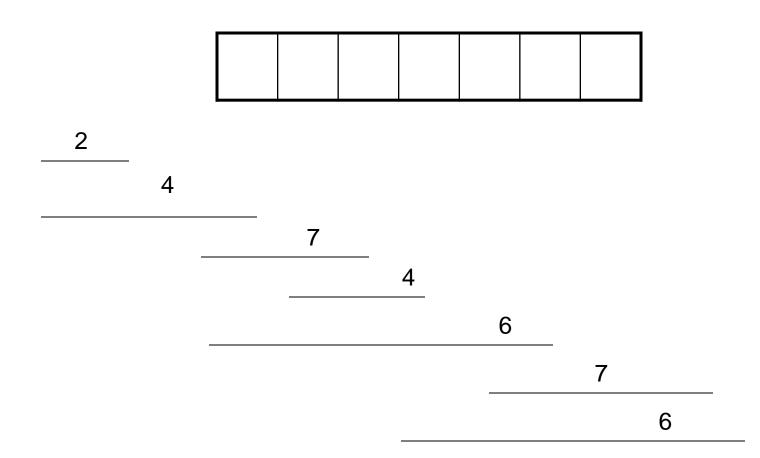
Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

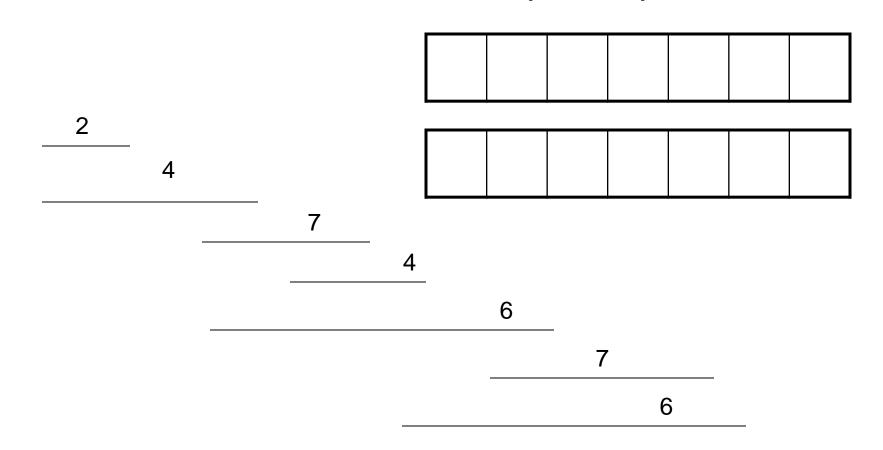
Fill in the array with the Opt values

Opt[j] = max (Opt[j - 1], w_j + Opt[p[j]))



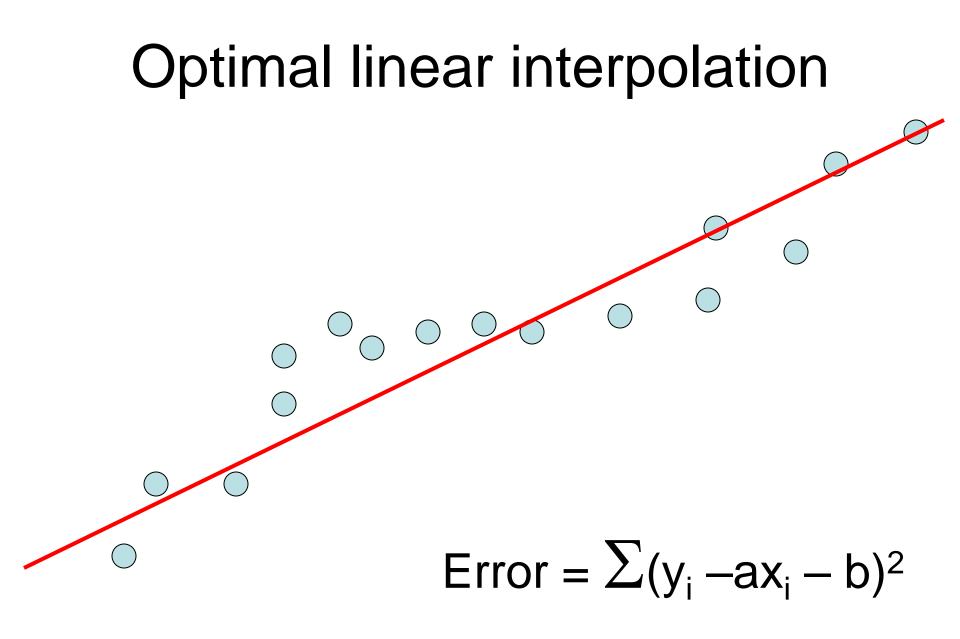
Computing the solution

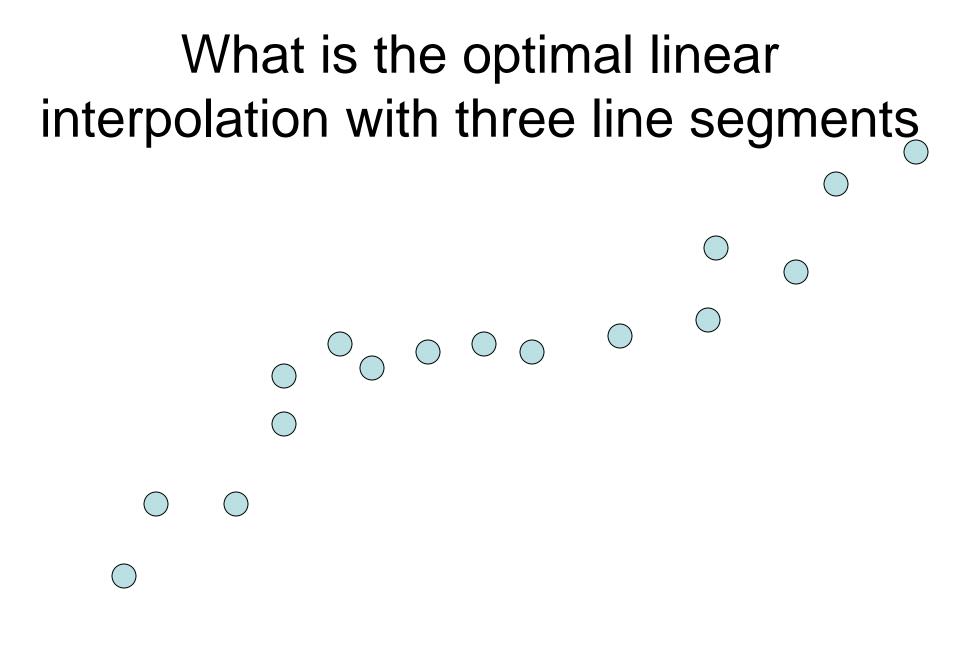
Opt[j] = max (Opt[j – 1], w_j + Opt[p[j]]) Record which case is used in Opt computation

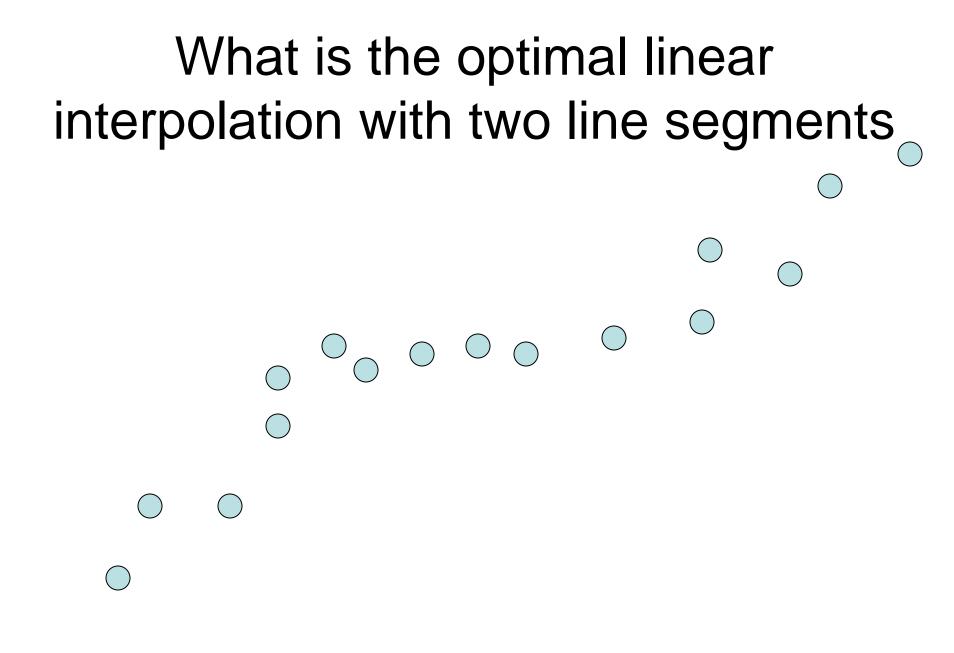


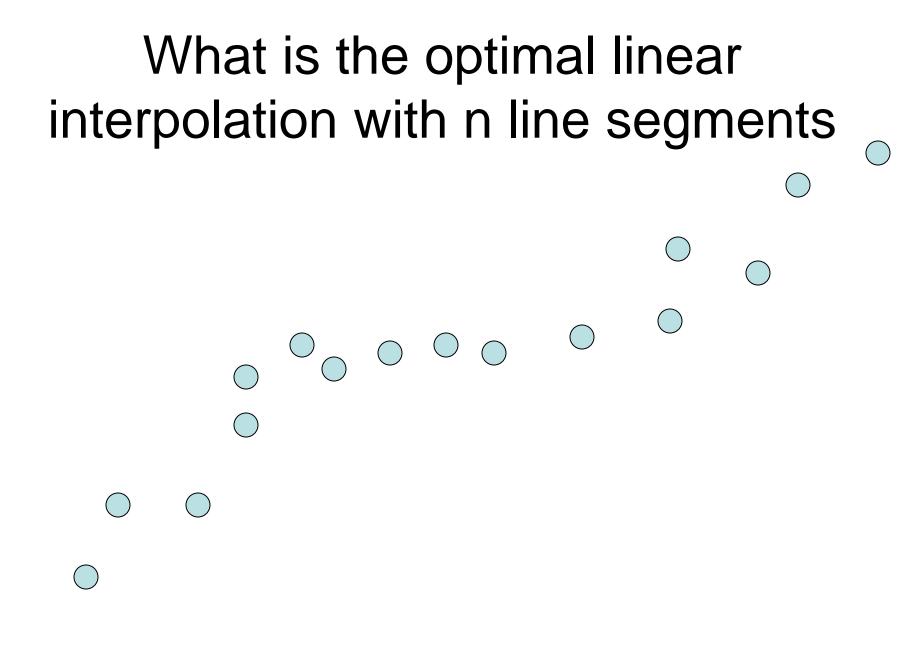
Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation









Notation

Points p₁, p₂, ..., p_n ordered by x-coordinate (p_i = (x_i, y_i))

• $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_i$

Optimal interpolation with two segments

 Give an equation for the optimal interpolation of p₁,...,p_n with two line segments

- $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_j$

Optimal interpolation with k segments

- Optimal segmentation with three segments
 - $-Min_{i,j} \{E_{1,i} + E_{i,j} + E_{j,n}\}$
 - $-O(n^2)$ combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

 $Opt_k[j]$: Minimum error approximating $p_1...p_j$ with k segments

How do you express $Opt_k[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

```
for j := 1 to n

Opt[ 1, j] = E_{1,j};

for k := 2 to n-1

for j := 2 to n

t := E_{1,j}

for i := 1 to j -1

t = min (t, Opt[k-1, i] + E_{i,j})

Opt[k, j] = t
```

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Variable number of segments

Segments not specified in advance

- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments

Penalty cost measure

Opt[j] = min(E_{1,j}, min_i(Opt[i] + E_{i,j} + P))