CSE 421
Algorithms
Lecture 15
Closest Pair, Multiplication

Divide and Conquer Algorithms

- Mergesort, Quicksort
- Strassen's Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)
- FFT
- Polynomial Multiplication
- Convolution

Closest Pair Problem

- Given a set of points find the pair of points p, q that minimizes $\operatorname{dist}(p, q)$

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Packing Lemma

Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ ?

Combining Solutions

- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

A packing lemma bounds the number of distances to check

Details

- Preprocessing: sort points by y
- Merge step
- Select points in boundary zone
- For each point in the boundary
- Find highest point on the other side that is at most δ above
- Find lowest point on the other side that is at most δ below
- Compare with the points in this interval (there are at most 6)

Algorithm run time

- After preprocessing:
$-T(n)=c n+2 T(n / 2)$

Integer Arithmetic \qquad

Simple algebra
$x=x_{1} 2^{n / 2}+x_{0}$
$y=y_{1} 2^{n / 2}+y_{0}$
$x y=x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}$
$p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)=x_{1} y_{1}+x_{1} y_{0}+x_{0} y_{1}+x_{0} y_{0}$

Karatsuba's Algorithm

Multiply n -digit integers x and y
Let $x=x_{1} 2^{n / 2}+x_{0}$ and $y=y_{1} 2^{n / 2}+y_{0}$ Recursively compute

$$
a=x_{1} y_{1}
$$

$$
\mathrm{b}=\mathrm{x}_{0} \mathrm{y}_{0}
$$

$$
p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)
$$

Return $a 2^{n}+(p-a-b) 2^{n / 2}+b$

Recurrence: $T(n)=3 T(n / 2)+c n$

FFT, Convolution and Polynomial Multiplication

- Preview
-FFT - O(n log n) algorithm
- Evaluate a polynomial of degree n at n points in O(n log n) time
- Computation of Convolution and Polynomial Multiplication (in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$) time

