CSE 421 Algorithms

Lecture 15 Closest Pair, Multiplication

Divide and Conquer Algorithms

- Mergesort, Quicksort
- Strassen's Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)
- FFT
 - Polynomial Multiplication
 - Convolution

Packing Lemma

Suppose that the minimum distance between points is at least δ , what is the maximum number of points that can be packed in a ball of radius δ ?

Combining Solutions

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Recursive Algorithm (First attempt)

 $\begin{aligned} x &= x_1 2^{n/2} + x_0 \\ y &= y_1 2^{n/2} + y_0 \\ xy &= (x_1 2^{n/2} + x_0) (y_1 2^{n/2} + y_0) \\ &= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \end{aligned}$ Recurrence:

Run time:

Simple algebra

 $x = x_1 2^{n/2} + x_0$ $y = y_1 2^{n/2} + y_0$

 $xy = x_1y_1 2^n + (x_1y_0 + x_0y_1) 2^{n/2} + x_0y_0$

 $p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$

Karatsuba's Algorithm

Multiply n-digit integers x and y

Let $x = x_1 2^{n/2} + x_0$ and $y = y_1 2^{n/2} + y_0$ Recursively compute $a = x_1y_1$ $b = x_0y_0$ $p = (x_1 + x_0)(y_1 + y_0)$ Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: T(n) = 3T(n/2) + cn

FFT, Convolution and Polynomial Multiplication

• Preview

- FFT O(n log n) algorithm
 - Evaluate a polynomial of degree n at n points in O(n log n) time
- Computation of Convolution and Polynomial Multiplication (in O(n log n)) time