
CSE 421 

Algorithms 

Richard Anderson 

Lecture 13 

Recurrences, Part 2 



Announcements 

• Midterm 

–  Monday, Nov 2, in class, closed book 

– Through section 5.2 

– Midterm review 

• Friday,  3:30-5:30 

• CSE 403 

• Homework 5 available 



Recurrence Examples 

• T(n) = 2 T(n/2) + cn 

– O(n log n) 

• T(n) = T(n/2) + cn 

– O(n) 

 

• More useful facts: 

– logkn = log2n / log2k 

– k log n = n log k 



Unrolling the recurrence 



Recursive Matrix Multiplication 

Multiply 2 x 2 Matrices: 

| r    s |    | a    b|   |e    g| 

| t     u|    | c    d|   | f    h| 

 

r = ae + bf 

s = ag + bh 

t = ce + df 

u = cg + dh 

 

A N x N matrix can be viewed as 

a 2 x 2 matrix with entries that 

are (N/2) x (N/2) matrices.  

The recursive matrix 

multiplication algorithm 

recursively multiplies the       

(N/2) x (N/2) matrices and 

combines them using the 

equations for multiplying 2 x 2 

matrices 

= 



Recursive Matrix Multiplication 

• How many recursive calls 

are made at each level? 

 

• How much work in 

combining the results? 

 

• What is the recurrence? 

 

 



What is the run time for the recursive 

Matrix Multiplication Algorithm? 

• Recurrence:  



T(n) = 4T(n/2) + cn 



T(n) = 2T(n/2) + n2 

 



T(n) = 2T(n/2) + n1/2 

 



Recurrences 

• Three basic behaviors 

– Dominated by initial case 

– Dominated by base case 

– All cases equal – we care about the depth 



What you really need to know 

about recurrences 

• Work per level changes geometrically with 

the level 

• Geometrically increasing (x > 1) 

– The bottom level wins 

• Geometrically decreasing  (x < 1) 

– The top level wins 

• Balanced (x = 1) 

– Equal contribution 



Classify the following recurrences 

(Increasing, Decreasing, Balanced) 

• T(n) = n + 5T(n/8) 

 

• T(n) = n + 9T(n/8) 

 

• T(n) = n2 + 4T(n/2) 

 

• T(n) = n3 + 7T(n/2) 

 

• T(n) = n1/2 + 3T(n/4) 



Strassen’s Algorithm 

Multiply 2 x 2 Matrices: 

| r    s |    | a    b|   |e    g| 

| t     u|    | c    d|   | f    h| 

 

r = p1 + p4 – p5 + p7 

s = p3 + p5 

t = p2 + p5 

u = p1 + p3 – p2 + p7 

Where: 

p1 = (b + d)(f + g) 

p2= (c + d)e 

p3= a(g – h) 

p4= d(f – e) 

p5= (a – b)h 

p6= (c – d)(e + g) 

p7= (b – d)(f + h) 

= 



Recurrence for Strassen’s 

Algorithms 

• T(n) = 7 T(n/2) + cn2 

• What is the runtime? 

 



BFPRT Recurrence 

• T(n) <= T(3n/4) + T(n/5) + 20 n 

What bound do you expect? 


