CSE 421 Algorithms

Richard Anderson Lecture 13 Recurrences, Part 2

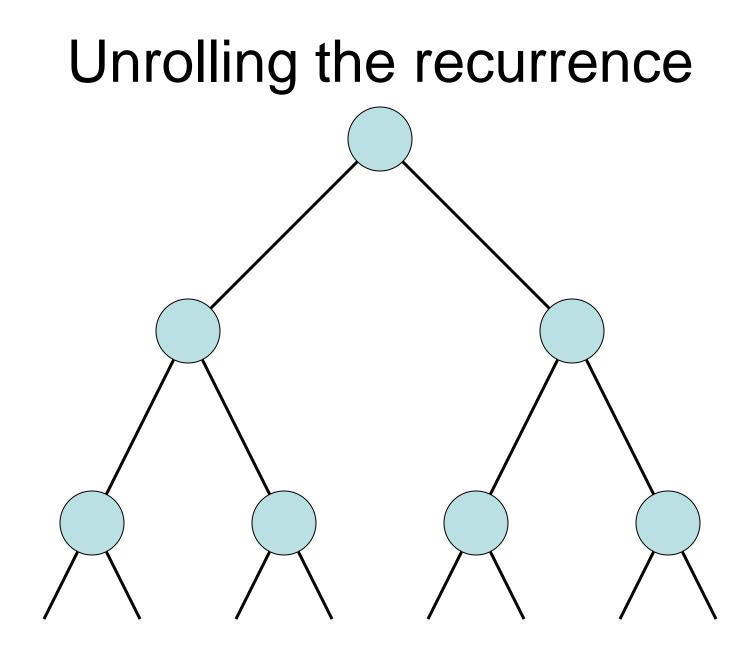
Announcements

- Midterm
 - Monday, Nov 2, in class, closed book
 - Through section 5.2
 - Midterm review
 - Friday, 3:30-5:30
 - CSE 403
- Homework 5 available

Recurrence Examples

- T(n) = 2 T(n/2) + cn- $O(n \log n)$
- T(n) = T(n/2) + cn- O(n)
- More useful facts:
 log_kn = log₂n / log₂k
 k ^{log n} = n ^{log k}

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$$



Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: | r s | = | a b | | e g || t u | = | c d | | f h |

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are $(N/2) \times (N/2)$ matrices.

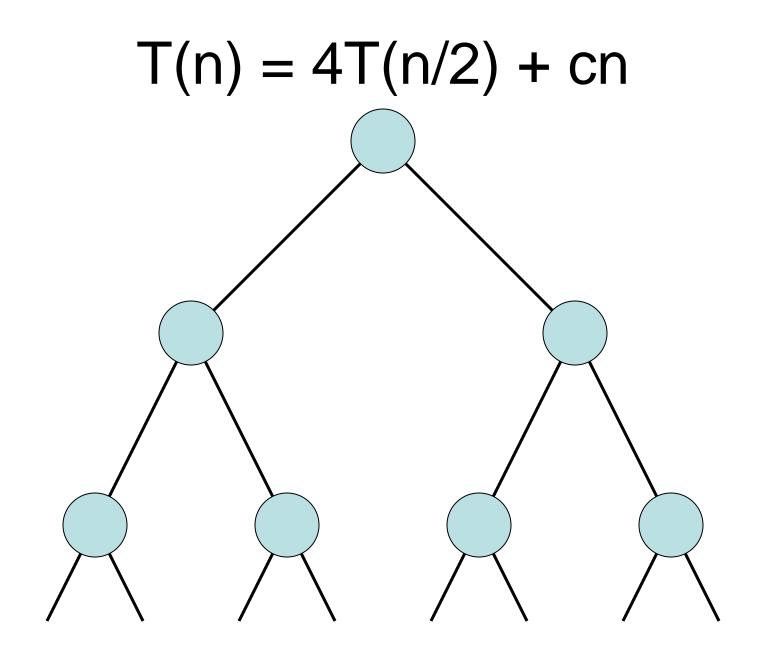
The recursive matrix multiplication algorithm recursively multiplies the $(N/2) \times (N/2)$ matrices and combines them using the equations for multiplying 2 x 2 matrices

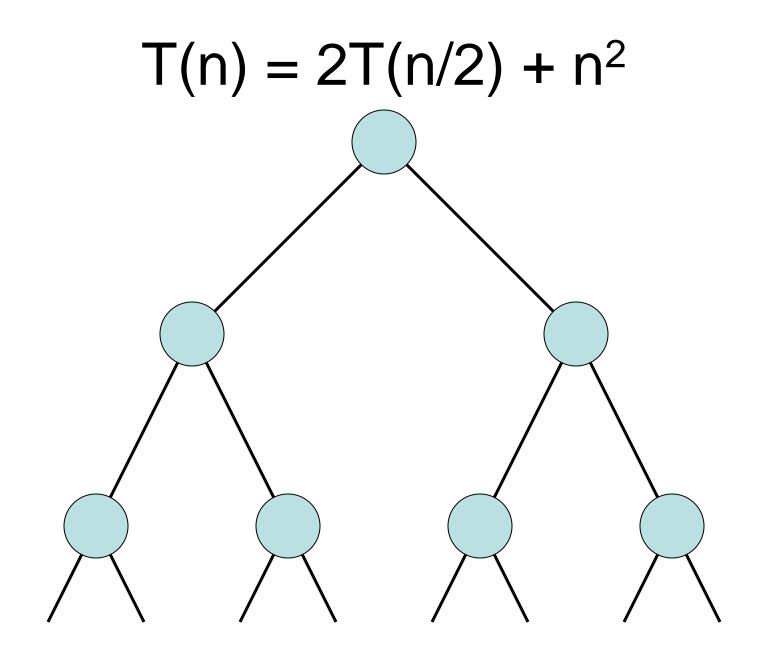
Recursive Matrix Multiplication

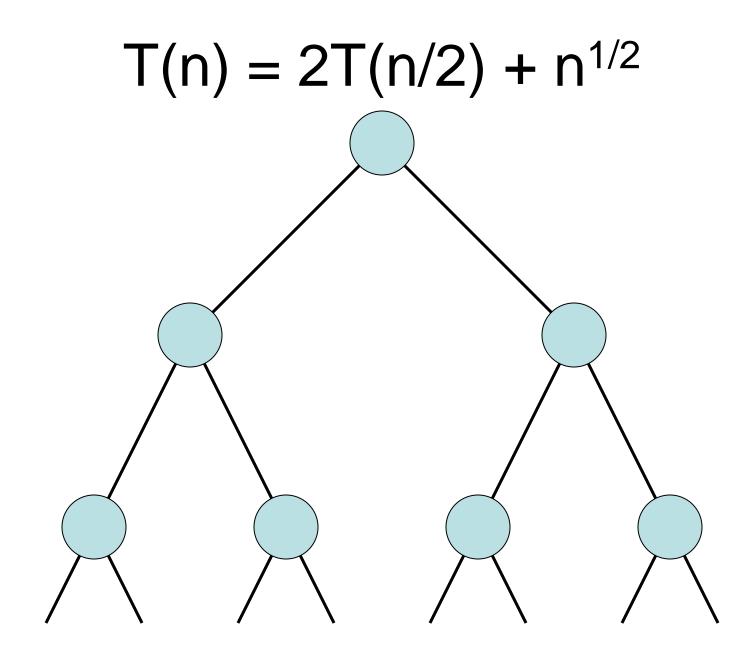
- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:







Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)

- The bottom level wins

- Geometrically decreasing (x < 1)
 The top level wins
- Balanced (x = 1)

- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$

Strassen's Algorithm

Multiply 2 x 2 Matrices: $\begin{vmatrix} r & s \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix} \begin{vmatrix} e & g \end{vmatrix}$ $\begin{vmatrix} t & u \end{vmatrix} \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} f & h \end{vmatrix}$ $r = p_1 + p_4 - p_5 + p_7$ $s = p_3 + p_5$ $t = p_2 + p_5$ $u = p_1 + p_3 - p_2 + p_7$

Where: $p_1 = (b + d)(f + g)$ $p_2 = (c + d)e$ $p_3 = a(g - h)$ $p_4 = d(f - e)$ $p_5 = (a - b)h$ $p_{e} = (c - d)(e + g)$ $p_7 = (b - d)(f + h)$

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- What is the runtime?

BFPRT Recurrence

• $T(n) \le T(3n/4) + T(n/5) + 20 n$

What bound do you expect?