CSE 421
Algorithms
Autumn 2015

Lecture 11
Minimum Spanning Trees (Part I1)

Minimum Spanning Tree

Undirected Graph
G=(V,E) with edge
15 . weights

Greedy Algorithms for Minimum
Spanning Tree

« [Prim] Extend a tree by
including the cheapest
out going edge

* [Kruskal] Add the
cheapest edge that joins
disjoint components

» [ReverseDelete] Delete
the most expensive edge
that does not disconnect
the graph

Why do the greedy algorithms
work?

+ For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

» Let S be a subset of V, and suppose e =
(u, v) is the minimum cost edge of E, with
uin SandvinV-S

* e is in every minimum spanning tree of G

— Or equivalently, if e is notin T, then T is not a
minimum spanning tree

e is the minimum cost edge
between S and V-S

Proof

« Suppose T is a spanning tree that does not contain e
« Add e to T, this creates a cycle

* The cycle must have some edge e, = (U, v;) with u, in S
and v, in V-S

e T,=T-{e,} +{e}is a spanning tree with lower cost
« Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
* Kruskal’s Algorithm computes a MST

» Show that when an edge is added to the
MST by Prim or Kruskal, the edge is the
minimum cost edge between S and V-S
for some set S.

Prim’s Algorithm

S={} T={}
while S 1=V

choose the minimum cost edge
e=(uyv),withuin S, and vin V-S

addetoT
addvto S

Prove Prim’s algorithm computes
an MST

» Show an edge e is in the MST when it is
addedto T

Kruskal’'s Algorithm

Let C={{va}, {vab . . vk T={}
while |C| > 1

Lete = (u, v) with u in C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C;by C; U C;
AddetoT

Prove Kruskal’s algorithm
computes an MST

» Show an edge e is in the MST when it is
addedto T

Reverse-Delete Algorithm

* Lemma: The most expensive edge on a
cycle is never in a minimum spanning tree

Dealing with the assumption of no
equal weight edges
» Force the edge weights to be distinct
— Add small quantities to the weights

— Give a tie breaking rule for equal weight
edges

Application: Clustering

+ Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

Distance clustering

+ Divide the data set into K subsets to
maximize the distance between any pair of

sets
—dist (S, S,) = min {dist(x, y) | xin S;, y in S,}

Divide into 2 clusters

Divide into 3 clusters

OOQ
o o ©
o
o
® o o o
°0 o o ©
o
o o ©
o o
o

Divide into 4 clusters

Distance Clustering Algorithm

Let C={{va}, {(vah. . . {vadh T={}
while [C| > K

Let e = (u, v) with u in C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C

K-clustering

Shortest paths in undirected
graphs vs directed graphs

What about the minimum spanning
tree of a directed graph?

« Must specify the root r
« Branching: Out tree with root r

Finding a minimum branching

Finding a minimum branching

» Remove all edges going into r

» Normalize the edge weights, so the
minimum weight edge coming into each
vertex has weight zero

7T $
2 4 0 2

This does not change the edges of the
minimum branching

Finding a minimum branching

» Consider the graph that consists of the
minimum cost edge coming in to each
vertex
— If this graph is a branching, then it is the

minimum cost branching
— Otherwise, the graph contains one or more
cycles

* Collapse the cycles in the original graph to super
vertics

» Reweight the graph and repeat the process

Finding a minimum branching

