CSE 421 Algorithms

Autumn 2015
Lecture 11
Minimum Spanning Trees (Part II)

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete
 the most expensive edge
 that does not disconnect
 the graph

Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e =
 (u, v) is the minimum cost edge of E, with
 u in S and v in V-S
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S

- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

```
S = { }; T = { };
while S != V

choose the minimum cost edge
  e = (u,v), with u in S, and v in V-S
  add e to T
  add v to S
```

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let
$$C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}\}$$

while $|C| > 1$

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C_i

Replace C_i and C_j by C_i U C_j

Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

 Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Application: Clustering

 Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
 - dist (S_1, S_2) = min $\{dist(x, y) \mid x \text{ in } S_1, y \text{ in } S_2\}$

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

Let
$$C = \{\{v_1\}, \{v_2\}, ..., \{v_n\}\}; T = \{\}\}$$

while $|C| > K$

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by C_i U C_j

K-clustering

Shortest paths in undirected graphs vs directed graphs

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertics
 - Reweight the graph and repeat the process

