CSE 421 Algorithms

Autumn 2015
Lecture 11
Minimum Spanning Trees (Part II)

Minimum Spanning Tree

Undirected Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge
 weights

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect
 the graph

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V , and suppose $\mathrm{e}=$ (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
- Or equivalently, if e is not in T , then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S .

Prim's Algorithm

$$
S=\{ \} ; \quad T=\{ \} ;
$$

while S != V
choose the minimum cost edge $e=(u, v)$, with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let $C=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{n}\right\}\right\} ; \mathrm{T}=\{ \}$ while $|C|>1$

Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C

Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$
Add e to T

Prove Kruskal's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
- Add small quantities to the weights
- Give a tie breaking rule for equal weight edges

Application: Clustering

- Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\min \left\{\operatorname{dist}(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}\right.$ in $\mathrm{S}_{1}, \mathrm{y}$ in $\left.\mathrm{S}_{2}\right\}$

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

Let $\left.\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|C|>K$
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C

Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

K-clustering

Shortest paths in undirected graphs vs directed graphs

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Finding a minimum branching

Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

Finding a minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
- If this graph is a branching, then it is the minimum cost branching
- Otherwise, the graph contains one or more cycles
- Collapse the cycles in the original graph to super vertics
- Reweight the graph and repeat the process

Finding a minimum branching

