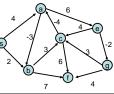
CSE 421 Algorithms

Autumn 2015 Lecture 10 Minimum Spanning Trees

Dijkstra's Algorithm Implementation and Runtime S = {}; | d[s] = 0; | d[v] = infinity for v! = s While S! = V Choose v in V-S with minimum d[v] Add v to S For each w in the neighborhood of v d[w] = min(d[w], d[v] + c(v, w)) HEAP OPERATIONS n Extract Mins m Heap Updates Edge costs are assumed to be non-negative

Shortest Paths

- Negative Cost Edges
 - Dijkstra's algorithm assumes positive cost edges
 - For some applications, negative cost edges make sense
 - Shortest path not well defined if a graph has a negative cost cycle

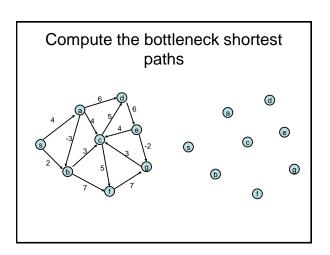


Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).

Bottleneck Shortest Path

 Define the bottleneck distance for a path to be the maximum cost edge along the path



Dijkstra's Algorithm for Bottleneck Shortest Paths

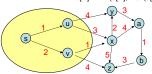
 $S = \{\}; \quad d[s] = negative \ infinity; \quad d[v] = infinity \ for \ v \ != s$ While $S \ != \ V$

Choose v in V-S with minimum d[v]

Add v to S

For each $\,w$ in the neighborhood of v

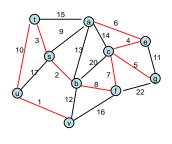
d[w] = min(d[w], max(d[v], c(v, w)))



Minimum Spanning Tree

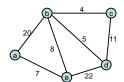
- · Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree



Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph

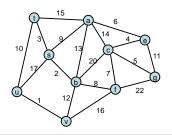


Greedy Algorithm 1 Prim's Algorithm

 Extend a tree by including the cheapest out going edge

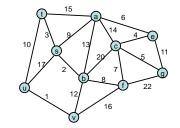
Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order of insertion



Greedy Algorithm 2 Kruskal's Algorithm

Add the cheapest edge that joins disjoint components



Label the edges in order of insertion

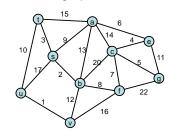
Construct the MST

with Kruskal's

algorithm

Greedy Algorithm 3 Reverse-Delete Algorithm

 Delete the most expensive edge that does not disconnect the graph



Construct the MST with the reverse-delete algorithm

Label the edges in order of removal

Greedy Algorithms for Minimum Spanning Tree

Dijkstra's Algorithm

for Minimum Spanning Trees

 $S = \{\}; d[s] = 0; d[v] = infinity for v != s$

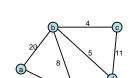
Add v to S

Choose v in V-S with minimum d[v]

For each w in the neighborhood of v d[w] = min(d[w], c(v, w))

While S != V

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph



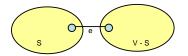
Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e =

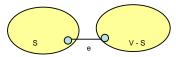
 (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree



e is the minimum cost edge

Proof

- · Suppose T is a spanning tree that does not contain e
- · Add e to T, this creates a cycle
- The cycle must have some edge e_1 = (u_1, v_1) with u_1 in S and v_1 in V-S



- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- · Hence, T is not a minimum spanning tree

Optimality Proofs

- · Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- · Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

$$\begin{split} S = \{\}; &\quad T = \{\}; \\ \text{while S != V} \\ \text{choose the minimum cost edge} \\ \text{e} = (u,v), \text{ with } u \text{ in S, and v in V-S} \\ \text{add e to T} \\ \text{add v to S} \end{split}$$

Prove Prim's algorithm computes an MST

• Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

$$\begin{split} \text{Let } C &= \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; \ T = \{ \ \} \\ \text{while } |C| > 1 \\ \text{Let } e &= (u, v) \text{ with } u \text{ in } C_i \text{ and } v \text{ in } C_j \text{ be the } \\ \text{minimum cost edge joining distinct sets in } C \\ \text{Replace } C_i \text{ and } C_j \text{ by } C_i \text{ U } C_j \\ \text{Add e to } T \end{split}$$

Prove Kruskal's algorithm computes an MST

• Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

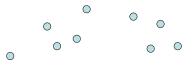
• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- · Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Application: Clustering

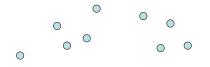
 Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together



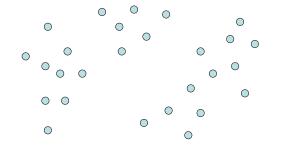
Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

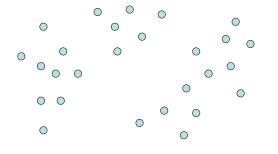
 $- \text{dist} (S_1, S_2) = \min \{ \text{dist}(x, y) \mid x \text{ in } S_1, y \text{ in } S_2 \}$



Divide into 2 clusters



Divide into 3 clusters



Divide into 4 clusters

Distance Clustering Algorithm

$$\label{eq:continuous} \begin{split} \text{while } |C| > K \\ \text{Let } e = (u, v) \text{ with } u \text{ in } C_i \text{ and } v \text{ in } C_j \text{ be the } \\ \text{minimum cost edge joining distinct sets in } C \\ \text{Replace } C_i \text{ and } C_j \text{ by } C_i \text{ U } C_j \end{split}$$

Let $C = \{\{v_1\}, \, \{v_2\}, \dots, \, \{v_n\}\}; \ T = \{ \, \}$

