CSE 421 Algorithms

Autumn 2015 Lecture 10 Minimum Spanning Trees

Dijkstra's Algorithm Implementation and Runtime

 $S = \{\}; d[s] = 0; d[v] = infinity for v != s$

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

```
d[w] = min(d[w], d[v] + c(v, w))
```


HEAP OPERATIONS

n Extract Mins

m Heap Updates

Edge costs are assumed to be non-negative

Shortest Paths

- Negative Cost Edges
 - Dijkstra's algorithm assumes positive cost edges
 - For some applications, negative cost edges make sense
 - Shortest path not well defined if a graph has a negative cost cycle

Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).

Bottleneck Shortest Path

 Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

Dijkstra's Algorithm for Bottleneck Shortest Paths

 $S = \{\}; d[s] = negative infinity; d[v] = infinity for v != s$ While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 1 Prim's Algorithm

 Extend a tree by including the cheapest out going edge

Label the edges in order of insertion

Greedy Algorithm 2 Kruskal's Algorithm

 Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm

Label the edges in order of insertion

Greedy Algorithm 3 Reverse-Delete Algorithm

 Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reversedelete algorithm

Label the edges in order of removal

Dijkstra's Algorithm for Minimum Spanning Trees

 $S = \{\}; d[s] = 0; d[v] = infinity for v != s$ While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))

Minimum Spanning Tree

Undirected Graph G=(V,E) with edge weights

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph

Why do the greedy algorithms work?

 For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S

- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

choose the minimum cost edge e = (u,v), with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > 1
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i \cup C_j$ Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Application: Clustering

 Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together

Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

- dist (S₁, S₂) = min {dist(x, y) | x in S₁, y in S₂}

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > K
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i U C_j$

K-clustering

