
CSE 421 

Algorithms 

Autumn 2015 

Lecture 10 

Minimum Spanning Trees 



Dijkstra’s Algorithm 

Implementation and Runtime 

S = {};    d[s] = 0;     d[v] = infinity for v != s 

While S != V 

 Choose v in V-S with minimum d[v] 

 Add v to S 

 For each  w in the neighborhood of v 

  d[w] = min(d[w], d[v] + c(v, w)) 
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Shortest Paths 

• Negative Cost Edges 

– Dijkstra’s algorithm assumes positive cost edges 

– For some applications, negative cost edges make 

sense 

– Shortest path not well defined if a graph has a 

negative cost cycle 
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Negative Cost Edge Preview 

• Topological Sort can be used for solving 

the shortest path problem in directed 

acyclic graphs 

• Bellman-Ford algorithm finds shortest 

paths in a graph with negative cost edges 

(or reports the existence of a negative cost 

cycle). 

 



Bottleneck Shortest Path 

• Define the bottleneck distance for a path 

to be the maximum cost edge along the 

path 
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Compute the bottleneck shortest 

paths 
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Dijkstra’s Algorithm 

for Bottleneck Shortest Paths 

S = {};    d[s] = negative infinity;     d[v] = infinity for v != s 

While S != V 

 Choose v in V-S with minimum d[v] 

 Add v to S 

 For each  w in the neighborhood of v 

  d[w] = min(d[w], max(d[v], c(v, w))) 
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Minimum Spanning Tree 

• Introduce Problem 

• Demonstrate three different greedy 

algorithms 

• Provide proofs that the algorithms work 



Minimum Spanning Tree 
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Greedy Algorithms for Minimum 

Spanning Tree 

• Extend a tree by 
including the 
cheapest out going 
edge 

• Add the cheapest 
edge that joins 
disjoint components 

• Delete the most 
expensive edge that 
does not disconnect 
the graph 
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Greedy Algorithm 1 

Prim’s Algorithm 

• Extend a tree by including the cheapest 

out going edge 
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Greedy Algorithm 2 

Kruskal’s Algorithm 

• Add the cheapest edge that joins disjoint 

components 
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Greedy Algorithm 3 

Reverse-Delete Algorithm 

• Delete the most expensive edge that does 

not disconnect the graph 
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Dijkstra’s Algorithm 

for Minimum Spanning Trees 

S = {};    d[s] = 0;     d[v] = infinity for v != s 

While S != V 

 Choose v in V-S with minimum d[v] 

 Add v to S 

 For each  w in the neighborhood of v 

  d[w] = min(d[w], c(v, w)) 
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Minimum Spanning Tree 
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G=(V,E) with edge 

weights 



Greedy Algorithms for Minimum 

Spanning Tree 

• [Prim] Extend a tree by 

including the cheapest 

out going edge 

• [Kruskal] Add the 

cheapest edge that joins 

disjoint components 

• [ReverseDelete] Delete 

the most expensive edge 

that does not disconnect 

the graph 
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Why do the greedy algorithms 

work? 

• For simplicity, assume all edge costs are 

distinct 



Edge inclusion lemma 

• Let S be a subset of V, and suppose e = 

(u, v) is the minimum cost edge of E, with 

u in S and v in V-S 

• e is in every minimum spanning tree of G 

– Or equivalently, if e is not in T, then T is not a 

minimum spanning tree 

S V - S 

e 



Proof  

• Suppose T is a spanning tree that does not contain e 

• Add e to T, this creates a cycle 

• The cycle must have some edge e1 = (u1, v1) with u1 in S 
and v1 in V-S 

 

 

 

 

 

 

• T1 = T – {e1} + {e} is a spanning tree with lower cost 

• Hence, T is not a minimum spanning tree 

S V - S 
e 

e is the minimum cost edge 

between S and V-S 



Optimality Proofs 

• Prim’s Algorithm computes a MST 

• Kruskal’s Algorithm computes a MST 

 

• Show that when an edge is added to the 

MST by Prim or Kruskal, the edge is the 

minimum cost edge between S and V-S 

for some set S. 



Prim’s Algorithm 

S = { };    T = { }; 

while S != V 

 choose the minimum cost edge                    

 e = (u,v), with u in S, and v in V-S 

 add e to T 

 add v to S 

 



Prove Prim’s algorithm computes 

an MST  

• Show an edge e is in the MST when it is 

added to T 



Kruskal’s Algorithm 

Let C = {{v1}, {v2}, . . ., {vn}};  T = { } 

while |C| > 1 

 Let e = (u, v) with u in Ci and v in Cj be the 

 minimum cost edge joining distinct sets in C 

 Replace Ci and Cj by Ci U Cj 

 Add e to T 

  



Prove Kruskal’s algorithm 

computes an MST  

• Show an edge e is in the MST when it is 

added to T 



Reverse-Delete Algorithm 

• Lemma:  The most expensive edge on a 

cycle is never in a minimum spanning tree 



Dealing with the assumption of no 

equal weight edges 

• Force the edge weights to be distinct 

– Add small quantities to the weights  

– Give a tie breaking rule for equal weight 

edges  



Application: Clustering 

• Given a collection of points in an r-

dimensional space, and an integer K, 

divide the points into K sets that are 

closest together 



Distance clustering 

• Divide the data set into K subsets to 

maximize the distance between any pair of 

sets 

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2} 



Divide into 2 clusters 

 



Divide into 3 clusters 

 



Divide into 4 clusters 

 



Distance Clustering Algorithm 

Let C = {{v1}, {v2},. . ., {vn}};  T = { } 

while |C| > K 

 Let e = (u, v) with u in Ci and v in Cj be the 

 minimum cost edge joining distinct sets in C 

 Replace Ci and Cj by Ci U Cj 

   

  



K-clustering 


