CSE 421
Algorithms

Autumn 2015
Lecture 10
Minimum Spanning Trees

Dijkstra’s Algorithm
Implementation and Runtime

S={; d[s]=0; d[v]=infinity forv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], d[v] + c(v, w))

HEAP OPERATIONS
n Extract Mins
m Heap Updates

Edge costs are assumed to be non-negative

Shortest Paths

* Negative Cost Edges
— Dijkstra’s algorithm assumes positive cost edges

— For some applications, negative cost edges make
sense

— Shortest path not well defined if a graph has a
negative cost cycle

Negative Cost Edge Preview

* Topological Sort can be used for solving
the shortest path problem in directed
acyclic graphs

» Bellman-Ford algorithm finds shortest
paths in a graph with negative cost edges

(or reports the existence of a negative cost
cycle).

Bottleneck Shortest Path

* Define the bottleneck distance for a path
to be the maximum cost edge along the
path

2115

Compute the bottleneck shortest
paths

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S ={}; d[s]=negative infinity; d[v] = infinity for v I=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], max(d[v], c(v, w)))

Minimum Spanning Tree

* Introduce Problem

 Demonstrate three different greedy
algorithms

* Provide proofs that the algorithms work

Minimum Spanning Tree

Greedy Algorithms for Minimum
Spanning Tree

« Extend a tree by
Including the
cheapest out going
edge

* Add the cheapest
edge that joins
disjoint components

 Delete the most
expensive edge that
does not disconnect
the graph

Greedy Algorithm 1
Prim’s Algorithm

« Extend a tree by including the cheapest
out going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

Greedy Algorithm 2
Kruskal's Algorithm

* Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal’s
algorithm

Label the edges in
order of insertion

Greedy Algorithm 3
Reverse-Delete Algorithm

* Delete the most expensive edge that does
not disconnect the graph

Construct the MST
with the reverse-
delete algorithm

Label the edges in
order of removal

Dijkstra’s Algorithm
for Minimum Spanning Trees

S={}; d[s]=0; d[v]=infinityforv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], c(v, w))

Minimum Spanning Tree

Undirected Graph
G=(V,E) with edge
15 weights

Greedy Algorithms for Minimum
Spanning Tree

« [Prim] Extend a tree by
Including the cheapest
out going edge

» [Kruskal] Add the
cheapest edge that joins
disjoint components

* [ReverseDelete] Delete
the most expensive edge
that does not disconnect
the graph

Why do the greedy algorithms
work?

* For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

* Let S be a subset of V, and suppose e =
(U, v) Is the minimum cost edge of E, with
uin SandvinV-S

* e IS In every minimum spanning tree of G

— Or equivalently, ifeisnotin T, then T is not a
minimum spanning tree

e is the minimum cost edge
between S and V-S

Proof

e Suppose T is a spanning tree that does not contain e
« Add eto T, this creates a cycle

* The cycle must have some edge e; = (U, V{) With u; In S
and v, in V-S

« T,=T-{e,} +{e}is a spanning tree with lower cost
 Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
» Kruskal’s Algorithm computes a MST

« Show that when an edge is added to the
MST by Prim or Kruskal, the edge Is the
minimum cost edge between S and V-S
for some set S.

Prim’s Algorithm

S={} T={}
while S 1=V

choose the minimum cost edge
e=(uVv),withuinS,andvinV-S

addetoT
addvto S

Prove Prim’s algorithm computes
an MST

 Show an edge e is in the MST when it Is
addedto T

Kruskal's Algorithm

Let C = {{v,}, {vo}, . . ., {vi}li T={}
while |C| > 1

Lete = (u, v) with uin C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C,
AddetoT

Prove Kruskal's algorithm
computes an MST

 Show an edge e is in the MST when it Is
addedto T

Reverse-Delete Algorithm

« Lemma: The most expensive edge on a
cycle Is never In a minimum spanning tree

Dealing with the assumption of no
equal weight edges

* Force the edge weights to be distinct
— Add small quantities to the weights

— Give a tie breaking rule for equal weight
edges

Application: Clustering

Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

Distance clustering

* Divide the data set into K subsets to
maximize the distance between any pair of
sets

—dist (S4, S,) = min {dist(x, y) | X In S;, y In S,}

Divide Iinto 2 clusters

OOQ
O
O O
O O O
O O O
O
O
O 0
O

Divide into 3 clusters

OOQ
O
O O
O O O
O O O
O
O
O 0
O

Divide into 4 clusters

OOQ
O
O O
O O O
O O O
O
O
O 0
O

Distance Clustering Algorithm

Let C = {{vi}, {Vvo},- - i {vidh T={}
while |C| > K

Lete = (u, v) with uin C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C,

K-clustering

