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Dijkstra’s Algorithm
Implementation and Runtime

S={; d[s]=0; d[v]=infinity forv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], d[v] + c(v, w))

HEAP OPERATIONS
n Extract Mins
m Heap Updates

Edge costs are assumed to be non-negative



Shortest Paths

* Negative Cost Edges
— Dijkstra’s algorithm assumes positive cost edges

— For some applications, negative cost edges make
sense

— Shortest path not well defined if a graph has a
negative cost cycle




Negative Cost Edge Preview

* Topological Sort can be used for solving
the shortest path problem in directed
acyclic graphs

» Bellman-Ford algorithm finds shortest
paths in a graph with negative cost edges

(or reports the existence of a negative cost
cycle).



Bottleneck Shortest Path

* Define the bottleneck distance for a path
to be the maximum cost edge along the
path

2115




Compute the bottleneck shortest
paths




Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S ={}; d[s]=negative infinity; d[v] = infinity for v I=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], max(d[v], c(v, w)))




Minimum Spanning Tree

* Introduce Problem

 Demonstrate three different greedy
algorithms

* Provide proofs that the algorithms work



Minimum Spanning Tree




Greedy Algorithms for Minimum
Spanning Tree

« Extend a tree by
Including the
cheapest out going
edge

* Add the cheapest
edge that joins
disjoint components

 Delete the most
expensive edge that
does not disconnect
the graph




Greedy Algorithm 1
Prim’s Algorithm

« Extend a tree by including the cheapest
out going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion




Greedy Algorithm 2
Kruskal's Algorithm

* Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal’s
algorithm

Label the edges in
order of insertion




Greedy Algorithm 3
Reverse-Delete Algorithm

* Delete the most expensive edge that does
not disconnect the graph

Construct the MST
with the reverse-
delete algorithm

Label the edges in
order of removal




Dijkstra’s Algorithm
for Minimum Spanning Trees

S={}; d[s]=0; d[v]=infinityforv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], c(v, w))




Minimum Spanning Tree

Undirected Graph
G=(V,E) with edge
15 weights




Greedy Algorithms for Minimum
Spanning Tree

« [Prim] Extend a tree by
Including the cheapest
out going edge

» [Kruskal] Add the
cheapest edge that joins
disjoint components

* [ReverseDelete] Delete
the most expensive edge
that does not disconnect
the graph




Why do the greedy algorithms
work?

* For simplicity, assume all edge costs are
distinct



Edge inclusion lemma

* Let S be a subset of V, and suppose e =
(U, v) Is the minimum cost edge of E, with
uin SandvinV-S

* e IS In every minimum spanning tree of G

— Or equivalently, ifeisnotin T, then T is not a
minimum spanning tree



e is the minimum cost edge
between S and V-S

Proof

e Suppose T is a spanning tree that does not contain e
« Add eto T, this creates a cycle

* The cycle must have some edge e; = (U, V{) With u; In S
and v, in V-S

« T,=T-{e,} +{e}is a spanning tree with lower cost
 Hence, T is not a minimum spanning tree



Optimality Proofs

* Prim’s Algorithm computes a MST
» Kruskal’s Algorithm computes a MST

« Show that when an edge is added to the
MST by Prim or Kruskal, the edge Is the
minimum cost edge between S and V-S
for some set S.



Prim’s Algorithm

S={} T={}
while S 1=V

choose the minimum cost edge
e=(uVv),withuinS,andvinV-S

addetoT
addvto S



Prove Prim’s algorithm computes
an MST

 Show an edge e is in the MST when it Is
addedto T



Kruskal's Algorithm

Let C = {{v,}, {vo}, . . ., {vi}li T={}
while |C| > 1

Lete = (u, v) with uin C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C,
AddetoT



Prove Kruskal's algorithm
computes an MST

 Show an edge e is in the MST when it Is
addedto T



Reverse-Delete Algorithm

« Lemma: The most expensive edge on a
cycle Is never In a minimum spanning tree



Dealing with the assumption of no
equal weight edges

* Force the edge weights to be distinct
— Add small quantities to the weights

— Give a tie breaking rule for equal weight
edges



Application: Clustering

Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together



Distance clustering

* Divide the data set into K subsets to
maximize the distance between any pair of
sets

—dist (S4, S,) = min {dist(x, y) | X In S;, y In S,}



Divide Iinto 2 clusters
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Divide into 3 clusters
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Divide into 4 clusters
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Distance Clustering Algorithm

Let C = {{vi}, {Vvo},- - i {vidh T={}
while |C| > K

Lete = (u, v) with uin C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C,



K-clustering



