CSE 421 Algorithms

Richard Anderson Autumn 2015
Lecture 8 - Greedy Algorithms II

Announcements

- Reading
- For today, sections 4.1, 4.2, 4.4
- For next week, sections 4.5, 4.7, 4.8
- Homework 3 is available

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today's problems (Sections 4.2, 4.3)
- Homework Scheduling
- Optimal Caching
- Subsequence testing

Highlights from Last Lecture

- Interval scheduling
- Earliest Deadline First
- Correctness proof: Stay ahead lemma
- Multiprocessor schedule
- Available processor algorithm
- Can always schedule with d processors, where d is the maximum number of intervals active at any time.

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- If I can't get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness $=f_{i}-d_{i}$ if $f_{i}>=d_{i}$

Example

Time
2
\square 3

Lateness 3

Determine the minimum lateness

Time
Deadline
\square
\square

6

4

5

12

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $d_{1}<=d_{2}<=\ldots<=d_{n}$
- A schedule has an inversion if job j is scheduled before i where $\mathrm{j}>\mathrm{i}$
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

List the inversions

Lemma: There is an optimal schedule with no idle time

- It doesn't hurt to start your homework early!
- Note on proof techniques
- This type of can be important for keeping proofs clean
- It allows us to make a simplifying assumption for the remainder of the proof

Lemma

- If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion

Interchange argument

- Suppose there is a pair of jobs i and j , with $\mathrm{d}_{\mathrm{i}}<=\mathrm{d}_{\mathrm{j}}$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Proof by Bubble Sort

Determine maximum lateness

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k -1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

- Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

- How is the model unrealistic?

Extensions

- What if the objective is to minimize the sum of the lateness?
- EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- Caching problem:
- Maintain collection of items in local memory
- Minimize number of items fetched

Caching example

$A, B, C, D, A, E, B, A, D, A, C, B, D, A$

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note - it is rare to know what the requests are in advance - but we still might want to do this:
- Some specific applications, the sequence is known
- Register allocation in code generation
- Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

- Discard element used farthest in the future

$$
A, B, C, A, C, D, C, B, C, A, D
$$

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
- There are some technicalities here to ensure the caches have the same configuration...

Subsequence Testing

- Is $a_{1} a_{2} \ldots a_{m}$ a subsequence of $b_{1} b_{2} \ldots b_{n}$?
- e.g. S, A, G, E is a subsequence of S,T,U,A,R,T,R,E,G,E,S

Greedy Algorithm for Subsequence Testing

Next week

