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Announcements 

• Reading 

– For today,  sections 4.1, 4.2, 4.4 

– For next week, sections 4.5, 4.7, 4.8   

• Homework 3 is available 



Greedy Algorithms 

• Solve problems with the simplest possible 

algorithm 

• The hard part: showing that something 

simple actually works 

• Today’s problems (Sections 4.2, 4.3) 

– Homework Scheduling 

– Optimal Caching 

– Subsequence testing 



Highlights from Last Lecture 

• Interval scheduling 

– Earliest Deadline First 

– Correctness proof:  Stay ahead lemma 

• Multiprocessor schedule 

– Available processor algorithm 

– Can always schedule with d processors, 

where d is the maximum number of intervals 

active at any time. 



Homework Scheduling 

• Tasks to perform 

• Deadlines on the tasks 

• Freedom to schedule tasks in any order 

 

• Can I get all my work turned in on time? 

• If I can’t get everything in, I want to 

minimize the maximum lateness 



Scheduling tasks 

• Each task has a length ti and a deadline di 

• All tasks are available at the start 

• One task may be worked on at a time 

• All tasks must be completed 

 

• Goal minimize maximum lateness 

– Lateness = fi – di if fi >= di 
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Determine the minimum lateness 

2 

3 

4 

5 

6 

4 

5 

12 

Deadline Time 



Greedy Algorithm 

• Earliest deadline first 

• Order jobs by deadline 

 

• This algorithm is optimal 



Analysis 

• Suppose the jobs are ordered by deadlines,     

d1 <= d2 <= . . . <= dn 

• A schedule has an inversion if job j is scheduled 

before i where j > i 

 

• The schedule A computed by the greedy 

algorithm has no inversions. 

• Let O be the optimal schedule, we want to show 

that A has the same maximum lateness as O 



List the inversions 
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Lemma: There is an optimal 

schedule with no idle time 

• It doesn’t hurt to start your homework early! 

 

• Note on proof techniques 

– This type of can be important for keeping proofs clean 

– It allows us to make a simplifying assumption for the 

remainder of the proof 

a4 a2 a3 a1 



Lemma 

• If there is an inversion i, j, there is a pair of 

adjacent jobs i’, j’ which form an inversion 



Interchange argument 

• Suppose there is a pair of jobs i and j, with  

di <= dj,  and j scheduled immediately 

before i.  Interchanging i and j does not 

increase the maximum lateness.   
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j i j i 



Proof by Bubble Sort 
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Real Proof 

• There is an optimal schedule with no 
inversions and no idle time. 

• Let O be an optimal schedule k inversions, 
we construct a new optimal schedule with 
k-1 inversions 

• Repeat until we have an optimal schedule 
with 0 inversions 

• This is the solution found by the earliest 
deadline first algorithm 



Result 

• Earliest Deadline First algorithm 

constructs a schedule that minimizes the 

maximum lateness 

 



Homework Scheduling 

• How is the model unrealistic? 



Extensions 

• What if the objective is to minimize the 
sum of the lateness? 

– EDF does not work 

• If the tasks have release times and 
deadlines, and are non-preemptable, the 
problem is NP-complete 

• What about the case with release times 
and deadlines where tasks are 
preemptable? 



Optimal Caching 

• Caching problem: 

– Maintain collection of items in local memory 

– Minimize number of items fetched 



Caching example 

A, B, C, D, A, E, B, A, D, A, C, B, D, A 



Optimal Caching 

• If you know the sequence of requests, 
what is the optimal replacement pattern? 

• Note – it is rare to know what the requests 
are in advance – but we still might want to 
do this: 
– Some specific applications, the sequence is 

known 
• Register allocation in code generation 

– Competitive analysis, compare performance 
on an online algorithm with an optimal offline 
algorithm 



Farthest in the future algorithm 

• Discard element used farthest in the future 

 

 

 

 

 

 

A, B, C, A, C, D, C, B, C, A, D 



Correctness Proof 

• Sketch 

• Start with Optimal Solution O 

• Convert to Farthest in the Future Solution 

F-F 

• Look at the first place where they differ 

• Convert O to evict F-F element 

– There are some technicalities here to ensure 

the caches have the same configuration . . . 



Subsequence Testing 

• Is a1a2…am a subsequence of b1b2…bn ? 

– e.g. S,A,G,E is a subsequence of 

S,T,U,A,R,T,R,E,G,E,S  



Greedy Algorithm for 

Subsequence Testing 



Next week 


