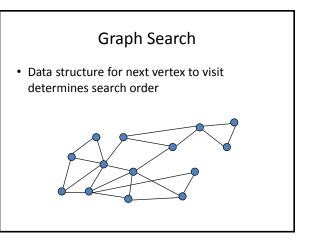
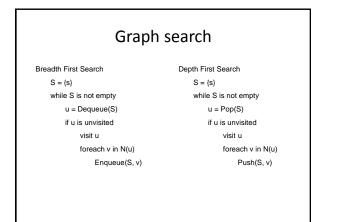
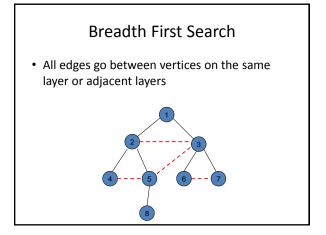


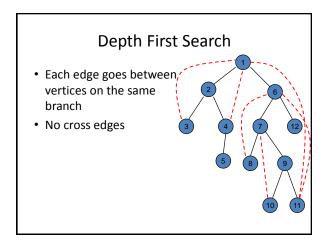
Last Lecture

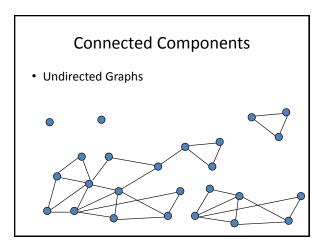
- Bipartite Graphs : two-colorable graphs
- Breadth First Search algorithm for testing twocolorability
 - Two-colorable iff no odd length cycle
 - BFS has cross edge iff graph has odd cycle





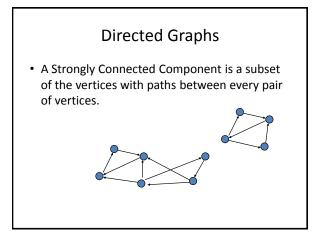


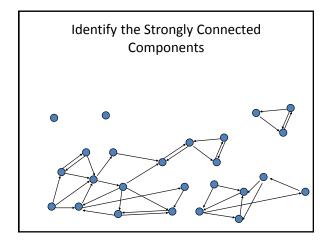




Computing Connected Components in O(n+m) time

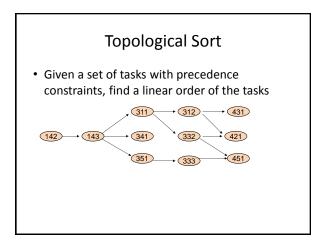
- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

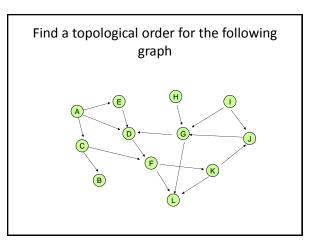


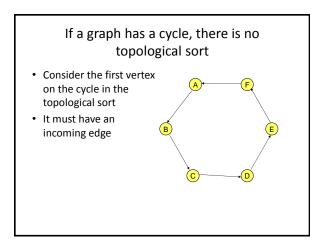


Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time



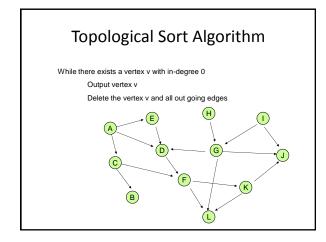




Lemma: If a graph is acyclic, it has a vertex with in degree 0

• Proof:

- Pick a vertex v_1 , if it has in-degree 0 then done
- If not, let $(\mathsf{v}_2,\mathsf{v}_1)$ be an edge, if v_2 has in-degree 0 then done
- If not, let (v₃, v₂) be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle



Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each