- $G=(V, E)$
- V-vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Graph search

- Find a path from s to t
$\mathrm{S}=\{\mathrm{s}\}$
while S is not empty
$u=\operatorname{Select}(\mathrm{S})$
visit u
foreach v in $N(u)$
if v is unvisited
Add(S, v)
$\operatorname{Pred}[\mathrm{v}]=\mathrm{u}$
if $(v=t)$ then path found

Announcements

- Reading
- Chapter 3 (Mostly review)
- Start on Chapter 4
- Richard Anderson - No office hour today
- Richard Anderson - No office hour today

Graph Theory

Key observation

- All edges go between vertices on the same layer or adjacent layers

Can this graph be two colored?

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Graph search

Breadth First Search
$\mathrm{S}=\{\mathrm{s}\}$
while S is not empty
$\mathrm{u}=$ Dequeue(S)
if u is unvisited
visit u
foreach v in $N(u)$ Enqueue(S, v)

Depth First Search
$S=\{s\}$
while S is not empty
$u=\operatorname{Pop}(S)$
if u is unvisited
visit u
foreach v in $N(u)$
Push(S, v)

Connected Components

- Undirected Graphs

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Computing Connected Components in

 $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Strongly connected components can be found in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in $O(n+m)$ time

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

