
CSE 421
Algorithms

Richard Anderson

Autumn 2015

Lecture 5

Announcements

• Reading

– Chapter 3 (Mostly review)

– Start on Chapter 4

• Richard Anderson – No office hour today

Graph Theory

• G = (V, E)
– V – vertices
– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops

Definitions

• Path: v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

Graph search

• Find a path from s to t

S = {s}

while S is not empty

 u = Select(S)

 visit u

 foreach v in N(u)

 if v is unvisited

 Add(S, v)

 Pred[v] = u

 if (v = t) then path found

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

Key observation

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7 6 5 4

1

Bipartite Graphs

• A graph V is bipartite if V can be partitioned
into V1, V2 such that all edges go between V1
and V2

• A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the graph
is bipartite

• If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

Theorem: A graph is bipartite if and only if
it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not
bipartite

Lemma 2

• If a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is
bipartite

Graph Search

• Data structure for next vertex to visit
determines search order

Graph search

Breadth First Search

 S = {s}

 while S is not empty

 u = Dequeue(S)

 if u is unvisited

 visit u

 foreach v in N(u)

 Enqueue(S, v)

Depth First Search

 S = {s}

 while S is not empty

 u = Pop(S)

 if u is unvisited

 visit u

 foreach v in N(u)

 Push(S, v)

Breadth First Search

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7 6 5 4

1

Depth First Search

• Each edge goes between
vertices on the same
branch

• No cross edges

1

2

5

6

12 7 4 3

8 9

10 11

Connected Components

• Undirected Graphs

Computing Connected Components in
O(n+m) time

• A search algorithm from a vertex v can find all
vertices in v’s component

• While there is an unvisited vertex v, search
from v to find a new component

Directed Graphs

• A Strongly Connected Component is a subset
of the vertices with paths between every pair
of vertices.

Identify the Strongly Connected
Components

Strongly connected components can be
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence
constraints, find a linear order of the tasks

142 143

311

341

351 333

332

312 431

421

451

Find a topological order for the following
graph

E

F

D

A

C

B

K

J
G

H
I

L

If a graph has a cycle, there is no
topological sort

• Consider the first vertex
on the cycle in the
topological sort

• It must have an
incoming edge B

A

D

E

F

C

Lemma: If a graph is acyclic, it has a vertex
with in degree 0

• Proof:

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

 Output vertex v

 Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L

Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are
removed

• m edge removals at O(1) cost each

