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Announcements 

• Reading 

– Chapter 3 (Mostly review) 

– Start on Chapter 4 

• Richard Anderson – No office hour today 



Graph Theory 

• G = (V, E) 
– V – vertices 
– E – edges  

• Undirected graphs 
– Edges sets of two vertices {u, v} 

• Directed graphs 
– Edges ordered pairs (u, v) 

• Many other flavors 
– Edge / vertices weights 
– Parallel edges 
– Self loops 



Definitions 

• Path:  v1, v2, …, vk, with (vi, vi+1) in E 
– Simple Path 
– Cycle 
– Simple Cycle 

• Neighborhood 
– N(v) 

• Distance 
• Connectivity 

– Undirected 
– Directed (strong connectivity) 

• Trees 
– Rooted 
– Unrooted 



Graph search 

• Find a path from s to t 

S = {s} 

while S is not empty 

 u = Select(S) 

 visit u 

 foreach v in N(u) 

  if v is unvisited 

   Add(S, v) 

   Pred[v] = u 

  if (v = t) then path found 



Breadth first search 

• Explore vertices in layers 

– s in layer 1 

– Neighbors of s in layer 2 

– Neighbors of layer 2 in layer 3 . . . 

s 



Key observation 

• All edges go between vertices on the same 
layer or adjacent layers 
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Bipartite Graphs 

• A graph V is bipartite if V can be partitioned 
into V1, V2 such that all edges go between V1 
and V2 

• A graph is bipartite if it can be two colored 



Can this graph be two colored? 



Algorithm 

• Run BFS 

• Color odd layers red, even layers blue 

• If no edges between the same layer, the graph 
is bipartite 

• If edge between two vertices of the same 
layer, then there is an odd cycle, and the 
graph is not bipartite 



Theorem: A graph is bipartite if and only if 
it has no odd cycles 



Lemma 1 

• If a graph contains an odd cycle, it is not 
bipartite 



Lemma 2 

• If a BFS tree has an intra-level edge, then the 
graph has an odd length cycle 

Intra-level edge: both end points are in the same level 



Lemma 3 

• If a graph has no odd length cycles, then it is 
bipartite 



Graph Search 

• Data structure for next vertex to visit 
determines search order 



Graph search 

Breadth First Search 

 S = {s} 

 while S is not empty 

  u = Dequeue(S) 

  if u is unvisited 

   visit u 

   foreach v in N(u) 

    Enqueue(S, v) 

       

Depth First Search 

 S = {s} 

 while S is not empty 

  u = Pop(S) 

  if u is unvisited 

   visit u 

   foreach v in N(u) 

    Push(S, v) 

      

   



Breadth First Search 

• All edges go between vertices on the same 
layer or adjacent layers 
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Depth First Search 

• Each edge goes between 
vertices on the same 
branch 

• No cross edges 
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Connected Components 

• Undirected Graphs 



Computing Connected Components in 
O(n+m) time 

• A search algorithm from a vertex v can find all 
vertices in v’s component 

• While there is an unvisited vertex v, search 
from v to find a new component 

 



Directed Graphs 

• A Strongly Connected Component is a subset 
of the vertices with paths between every pair 
of vertices. 



Identify the Strongly Connected 
Components 

 



Strongly connected components can be 
found in O(n+m) time 

• But it’s tricky! 

• Simpler problem: given a vertex v, compute the 
vertices in v’s scc in O(n+m) time 



Topological Sort 

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks 
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Find a topological order for the following 
graph 
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If a graph has a cycle, there is no 
topological sort 

• Consider the first vertex 
on the cycle in the 
topological sort 

• It must have an 
incoming edge B 
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Lemma: If a graph is acyclic, it has a vertex 
with in degree 0 

• Proof:   

– Pick a vertex v1, if it has in-degree 0 then done 

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 
then done 

– If not, let (v3, v2) be an edge . . . 

– If this process continues for more than n steps, we 
have a repeated vertex, so we have a cycle 



Topological Sort Algorithm 

While there exists a vertex v with in-degree 0 

 Output vertex v 

 Delete the vertex v and all out going edges 
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Details for O(n+m) implementation 

• Maintain a list of vertices of in-degree 0 

• Each vertex keeps track of its in-degree 

• Update in-degrees and list when edges are 
removed 

• m edge removals at O(1) cost each 

 


