CSE 421 Algorithms

Richard Anderson Autumn 2015 Lecture 4

Announcements

- Reading
 - Chapter 2.1, 2.2
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- · Homework Guidelines
 - Prove that your algorithm works
 - A proof is a "convincing argument"
 - Give the run time for you algorithm
 - Justify that the algorithm satisfies the runtime bound
 - You may lose points for style

What does it mean for an algorithm to be efficient?

Definitions of efficiency

- · Fast in practice
- Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- · Run time as a function of problem size
 - Run time: count number of instructions executed on an underlying model of computation
 - T(n): maximum run time for all problems of size at most n

Polynomial Time

 Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes n! steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:
- 12 14 16 18 20

Ignoring constant factors

- Express run time as O(f(n))
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- · Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- · Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is O(f(n)) will be written as:
 T(n) = O(f(n))
 - Be careful with this notation

Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let c =

Let $n_0 =$

T(n) is O(f(n)) if there exist $c,\,n_0,$ such that for $n>n_0,\,T(n)< c\;f(n)$

Order the following functions in increasing order by their growth rate

- a) n log4n
- b) $2n^2 + 10n$
- c) 2^{n/100}
- d) 1000n + log8 n
- e) n^{100}
- f) 3ⁿ
- g) 1000 log10n
- h) n^{1/2}

Lower bounds

- T(n) is $\Omega(f(n))$
 - T(n) is at least a constant multiple of f(n)
 - There exists an n_0 , and $\epsilon > 0$ such that $T(n) > \epsilon f(n)$ for all $n > n_0$
- Warning: definitions of Ω vary
- T(n) is Θ(f(n)) if T(n) is O(f(n)) and T(n) is Ω(f(n))

Useful Theorems

- If lim (f(n) / g(n)) = c for c > 0 then f(n) = Θ(g(n))
- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))
- If f(n) is O(h(n)) and g(n) is O(h(n)) then f(n) + g(n) is O(h(n))

Ordering growth rates

- For b > 1 and x > 0
 log^bn is O(n^x)
- For r > 1 and d > 0
 n^d is O(rⁿ)

Graph Theory

- G = (V, E)
 - V vertices
 - E edges
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
- Simple Cycle
- Distance
- · Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph search

• Find a path from s to t

 $S = \{s\}$

While there exists (u, v) in E with u in S and v not in S

Pred[v] = u

Add v to S

if (v = t) then path found

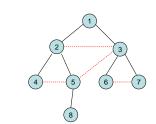
Breadth first search

- · Explore vertices in layers
 - -s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .



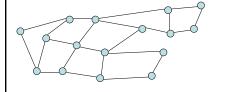
Key observation

 All edges go between vertices on the same layer or adjacent layers

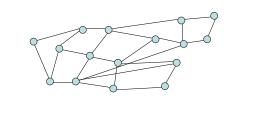


Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V₁, V₂ such that all edges go between V₁ and V₂
- A graph is bipartite if it can be two colored



Can this graph be two colored?



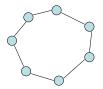
Algorithm

- Run BFS
- · Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not bipartite



Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is bipartite