CSE 421
 Algorithms

Richard Anderson Autumn 2015 Lecture 4

Announcements

- Reading
- Chapter 2.1, 2.2
- Chapter 3 (Mostly review)
- Start on Chapter 4
- Homework Guidelines
- Prove that your algorithm works
- A proof is a "convincing argument"
- Give the run time for you algorithm
- Justify that the algorithm satisfies the runtime bound
- You may lose points for style

What does it mean for an algorithm to be efficient?

Definitions of efficiency

- Fast in practice
- Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
- Run time: count number of instructions executed on an underlying model of computation
$-\mathrm{T}(\mathrm{n})$: maximum run time for all problems of size at most n

Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes n ! steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:
12
14
16
18
20

Ignoring constant factors

- Express run time as $\mathrm{O}(\mathrm{f}(\mathrm{n})$)
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- Constant factors are arbitrary
- Depend on the implementation
- Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- $T(n)$ is $O(f(n))$ $\left[\mathrm{T}: \mathrm{Z}^{+} \rightarrow \mathrm{R}^{+}\right]$
- If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
- Exist c, n_{0}, such that for $n>n_{0}, T(n)<c f(n)$
- $T(n)$ is $O(f(n))$ will be written as: $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$
- Be careful with this notation

Prove $3 n^{2}+5 n+20$ is $O\left(n^{2}\right)$

Let $\mathrm{c}=$
Let $\mathrm{n}_{0}=$
$T(n)$ is $O(f(n))$ if there exist c, n_{0}, such that for $n>n_{0}$, $\mathrm{T}(\mathrm{n})<\mathrm{cf}(\mathrm{n})$

Order the following functions in

 increasing order by their growth rate a) $n \log ^{4} n$b) $2 n^{2}+10 n$
c) $2^{n / 100}$
d) $1000 \mathrm{n}+\log ^{8} \mathrm{n}$
e) n^{100}
f) 3^{n}
g) $1000 \log ^{10} n$
h) $n^{1 / 2}$

Lower bounds

- $\mathrm{T}(\mathrm{n})$ is $\Omega(\mathrm{f}(\mathrm{n}))$
$-T(n)$ is at least a constant multiple of $f(n)$
- There exists an n_{0}, and $\varepsilon>0$ such that $T(n)>\varepsilon f(n)$ for all $n>n_{0}$
- Warning: definitions of Ω vary
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $\mathrm{T}(\mathrm{n})$ is $\Omega(\mathrm{f}(\mathrm{n}))$

Useful Theorems

- If $\lim (f(n) / g(n))=c$ for $c>0$ then $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{h}(\mathrm{n}))$
- If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n)+g(n)$ is $O(h(n))$

Ordering growth rates

- For $b>1$ and $x>0$
$-\log ^{b} n$ is $\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$
- For $r>1$ and $d>0$
$-\mathrm{n}^{\mathrm{d}}$ is $\mathrm{O}\left(\mathrm{r}^{\mathrm{n}}\right)$

Graph Theory

- $G=(V, E)$
- V - vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
- Simple Path
- Cycle
- Simple Cycle
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph search

- Find a path from s to t
$S=\{s\}$
While there exists (u, v) in E with u in S and v not in S
Pred[v] $=u$
Add v to S
if $(v=t)$ then path found

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 . .

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

