CSE 421 Algorithms

Richard Anderson Autumn 2015 Lecture 2

Announcements

- Homework 1, due Wednesday Oct 7
 - in class, paper turn in
 - pay attention to making explanations clear and understandable
- Reading
 - Chapter 1, Sections 2.1, 2.2

Office Hours

- · Richard Anderson, CSE 582
 - Monday, 2:30-3:30; Friday, 2:30-3:30.
- · Cyrus Raschtchian
- Friday, 9:00-10:30
- Yeuqi Sheng
- TBD
- · Erin Yoon
 - TBD
- Kuai Yu
 - TBD

Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property:

If (m', w') ∈ M and (m", w") ∈ M then (m' prefers w' to w") or (w" prefers m" to m")

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m₂ w accepts m, dumping m₂ If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

> suppose (m2, w) is matched if w prefers m to m₂ unmatch (m2, w) match (m, w)

Does this work?

- · Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$$(m_1, w_1) \in M, (m_2, w_2) \in M$$

 $m_1 \text{ prefers } w_2 \text{ to } w_1$

How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- · Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

m₁: w₁ w₂ w₃ m₂: w₂ w₃ w₁

m₃: w₂ w₃ w₁

w₁: m₂ m₃ m₁

 w_2 : m_3 m_1 m_2 m_3 : m_1 m_2 m_3

How many stable matchings can you find?

m_1

 (w_1)

(w_z

Algorithm under specified

- · Many different ways of picking m's to propose
- · Surprising result
 - All orderings of picking free m's give the same result
- · Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of mranks
- w-rank: position of matching m in preference list
- W-rank: sum of wranks

m₁: w₁ w₂ w₃ m₁0
m₂: w₁ w₃ w₂
m₃: w₁ w₂ w₃
w₁: m₂ m₃ m₁
w₂: m₃ m₁ m₂
w₃: m₃ m₁ m₂
m₃: m₄ m₂ m₃ m₄

What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- · What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

 $\begin{array}{l} m_1: \, w_8 \, \, w_3 \, \, w_1 \, \, w_5 \, \, w_9 \, \, w_2 \, \, w_4 \, \, w_6 \, \, w_7 \, \, w_{10} \\ m_2: \, w_7 \, \, w_{10} \, \, w_1 \, \, w_9 \, \, w_3 \, \, w_4 \, \, w_8 \, \, w_2 \, \, w_5 \, w_6 \end{array}$

 $\begin{array}{l} ... \\ w_1 \!: m_1 \; m_4 \; m_9 \; m_5 \; m_{10} \; m_3 \; m_2 \; m_6 \; m_8 \; m_7 \\ w_2 \!: m_5 \; m_8 \; m_1 \; m_3 \; m_2 \; m_7 \; m_9 \; m_{10} \; m_4 \; m_6 \end{array}$

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Best choices for one side may be bad for the other

Design a configuration for problem of size 4: m₂:

M proposal algorithm:
All m's get first choice, all w's get last choice
W proposal algorithm:
All w's get first choice, all m's get last choice
W₂:
w₃:
w₄:

But there is a stable second choice

m₁: Design a configuration for problem of size 4: m₂: M proposal algorithm: m₃: All m's get first choice, all w's get last choice m₄: W proposal algorithm: All w's get first choice, all m's get last choice W_1 : There is a stable matching W₂: where everyone gets their second choice W₃: Wa:

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m Executed at most n² times
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m₂, w) is matched
if w prefers m to m₂
unmatch (m₂, w)
match (m, w)

O(1) time per iteration

- Find free m
- · Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- · Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- · Under specification of algorithm
- · Establishing uniqueness of solution