CSE 421

Algorithms
Richard Anderson
Autumn 2015
Lecture 2

Office Hours

- Richard Anderson, CSE 582
- Monday, 2:30-3:30; Friday, 2:30-3:30.
- Cyrus Raschtchian
- Friday, 9:00-10:30
- Yeuqi Sheng
- TBD
- Erin Yoon
- TBD
- Kuai Yu
- TBD

Announcements

- Homework 1, due Wednesday Oct 7
- in class, paper turn in
- pay attention to making explanations clear and understandable
- Reading
- Chapter 1, Sections 2.1, 2.2

Formal Problem

- Input
- Preference lists for $m_{1}, m_{2}, \ldots, m_{n}$
- Preference lists for $w_{1}, w_{2}, \ldots, w_{n}$
- Output
- Perfect matching M satisfying stability property:

If $\left(m^{\prime}, w^{\prime}\right) \in M$ and $\left(m^{\prime \prime}, w^{\prime \prime}\right) \in M$ then
(m^{\prime} prefers w^{\prime} to $w^{\prime \prime}$) or ($w^{\prime \prime}$ prefers $m^{\prime \prime}$ to m^{\prime})

Algorithm

Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch $\left(m_{2}, w\right)$
match (m, w)

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
- m's proposals get worse (have higher m-rank)
- Once w is matched, w stays matched
- w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

When the algorithms halts, every w is matched Why?

The resulting matching is stable
Suppose
$\left(m_{1}, w_{1}\right) \in M,\left(m_{2}, w_{2}\right) \in M$
m_{1} prefers w_{2} to w_{1}

How could this happen?

Result

- Simple, $O\left(\mathrm{n}^{2}\right)$ algorithm to compute a stable matching
- Corollary
- A stable matching always exists

A closer look

Stable matchings are not necessarily fair

$m_{1}:$	w_{1}	w_{2}	w_{3}	
$m_{2}:$	w_{2}	w_{3}	w_{1}	
$m_{3}:$	w_{3}	w_{1}	w_{2}	
$w_{1}:$	m_{2}	m_{3}	m_{1}	
$w_{2}:$	m_{3}	m_{1}	m_{2}	
$w_{3}:$	m_{1}	m_{2}	m_{3}	
many stable matchings can you find?				

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of mranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-
$m_{1}: w_{1} w_{2} w_{3}$ $m_{2}: w_{1} w_{3} w_{2}$ $m_{3}: w_{1} w_{2} w_{3}$
$w_{1}: m_{2} m_{3} m_{1}$
$w_{2}: m_{3} m_{1} m_{2}$
$w_{3}: m_{3} m_{1} m_{2}$

What is the M-rank?

- Prove algorithm is computing something mores specific
- Show property of the solution - so it computes a specific stable matching
ranks

What is the W-rank?

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w , what is the expected M -rank?

Random Preferences

Suppose that the preferences are completely random

$$
\begin{aligned}
& m_{1}: w_{8} w_{3} w_{1} w_{5} w_{9} w_{2} w_{4} w_{6} w_{7} w_{10} \\
& m_{2}: w_{7} w_{10} w_{1} w_{9} w_{3} w_{4} w_{8} w_{2} w_{5} w_{6} \\
& \ldots \\
& w_{1}: m_{1} m_{4} m_{9} m_{5} m_{10} m_{3} m_{2} m_{6} m_{8} m_{7} \\
& w_{2}: m_{5} m_{8} m_{1} m_{3} m_{2} m_{7} m_{9} m_{10} m_{4} m_{6}
\end{aligned}
$$

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Best choices for one side may be bad for the other	
Design a contiguration for	m_{i} :
problem of size 4:	m_{2} :
M proposal algorithm:	m_{3} :
get last chioce	m_{4}
All w's get first choice, all m's	w_{i}
	w_{2}
	$w_{3}{ }^{\text {i }}$
	$\mathrm{w}_{*}{ }^{\text {s }}$

But there is a stable second choice

Design a configuration for	$m_{1}:$
problem of size 4:	
M proposal algorithm:	
All m's get first choice, all w's	
get last choice	
W proposal algorithm:	m_{2} :
\quadAll w's get first choice, all m's get last choice	m_{4} :
There is a stable matching where everyone gets their second choice	w_{2} :
	w_{3} :
	$w_{4}:$

What is the run time of the Stable Matching Algorithm?

Initially all m in M and win W are free While there is a free $m \quad$ Executed at most n^{2} times w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch ($\mathrm{m}_{2}, \mathrm{w}$)
match (m, w)

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
- Model: graph and preference lists
- Mechanism: stability condition
- Specification of algorithm with a natural operation
- Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

