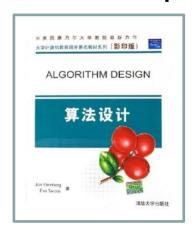
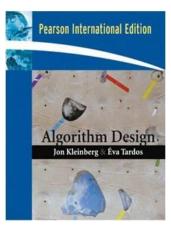
CSE 421 Algorithms

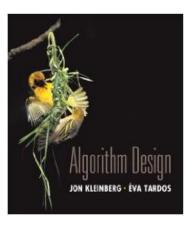
Richard Anderson
Autumn 2015
Lecture 2

Announcements

- Homework 1, due Wednesday Oct 7
 - in class, paper turn in
 - pay attention to making explanations clear and understandable
- Reading
 - Chapter 1, Sections 2.1, 2.2

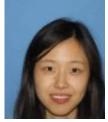






Office Hours

- Richard Anderson, CSE 582
 - Monday, 2:30-3:30; Friday, 2:30-3:30.
- Cyrus Raschtchian
 - Friday, 9:00-10:30
- Yeuqi Sheng
 - TBD
- Erin Yoon
 - TBD
- Kuai Yu
 - TBD



Formal Problem

- Input
 - Preference lists for m₁, m₂, ..., m_n
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property:

```
If (m', w') \in M and (m'', w'') \in M then (m') prefers w' to w'') or (w'') prefers m'' to m')
```

Idea for an Algorithm

```
m proposes to w

If w is unmatched, w accepts

If w is matched to m<sub>2</sub>

If w prefers m to m<sub>2</sub> w accepts m, dumping m<sub>2</sub>

If w prefers m<sub>2</sub> to m, w rejects m
```

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

```
Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m<sub>2</sub>, w) is matched
if w prefers m to m<sub>2</sub>
unmatch (m<sub>2</sub>, w)
match (m, w)
```

Example

m₁: w₁ w₂ w₃

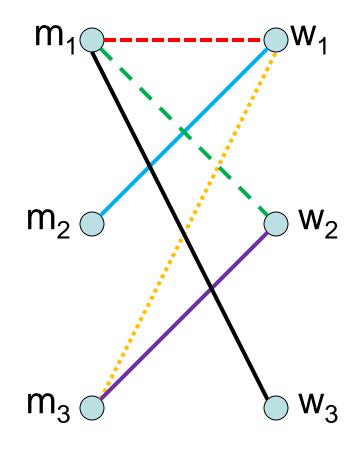
m₂: w₁ w₃ w₂

m₃: w₁ w₂ w₃

w₁: m₂ m₃ m₁

w₂: m₃ m₁ m₂

w₃: m₃ m₁ m₂



Order: m_1 , m_2 , m_3 , m_1 , m_3 , m_1

Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

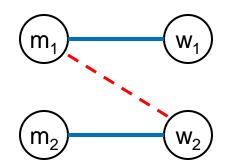
Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m_1 prefers w_2 to w_1



How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

 m_1 : W_1 W_2 W_3

 m_2 : w_2 w_3 w_1

 m_3 : W_3 W_1 W_2

 $w_1: m_2 m_3 m_1$

 w_2 : m_3 m_1 m_2

 w_3 : m_1 m_2 m_3

 m_1

 (W_1)

 m_2

 (w_2)

 m_3

 (W_3)

How many stable matchings can you find?

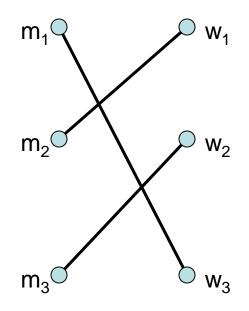
Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
 - All orderings of picking free m's give the same result
- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of mranks
- w-rank: position of matching m in preference list
- W-rank: sum of wranks

m₁: w₁ w₂ w₃
m₂: w₁ w₃ w₂
m₃: w₁ w₂ w₃
w₁: m₂ m₃ m₁
w₂: m₃ m₁ m₂
w₃: m₃ m₁ m₂



What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

What is the minimum possible M-rank?

What is the maximum possible M-rank?

 Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

```
m<sub>1</sub>: W<sub>8</sub> W<sub>3</sub> W<sub>1</sub> W<sub>5</sub> W<sub>9</sub> W<sub>2</sub> W<sub>4</sub> W<sub>6</sub> W<sub>7</sub> W<sub>10</sub>
m<sub>2</sub>: W<sub>7</sub> W<sub>10</sub> W<sub>1</sub> W<sub>9</sub> W<sub>3</sub> W<sub>4</sub> W<sub>8</sub> W<sub>2</sub> W<sub>5</sub> W<sub>6</sub>
...
W<sub>1</sub>: m<sub>1</sub> m<sub>4</sub> m<sub>9</sub> m<sub>5</sub> m<sub>10</sub> m<sub>3</sub> m<sub>2</sub> m<sub>6</sub> m<sub>8</sub> m<sub>7</sub>
w<sub>2</sub>: m<sub>5</sub> m<sub>8</sub> m<sub>1</sub> m<sub>3</sub> m<sub>2</sub> m<sub>7</sub> m<sub>9</sub> m<sub>10</sub> m<sub>4</sub> m<sub>6</sub>
```

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Best choices for one side may be bad for the other

Design a configuration for problem of size 4:

 m_1 :

m₂:

M proposal algorithm:

All m's get first choice, all w's

get last choice

 m_3 :

m₄:

W proposal algorithm:

All w's get first choice, all m's get last choice

 W_1 :

 W_2 :

 W_3 :

 W_4 :

But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:

All m's get first choice, all w's get last choice

W proposal algorithm:

All w's get first choice, all m's get last choice

There is a stable matching where everyone gets their second choice

 m_1 :

m₂:

m₃:

 m_4 :

 W_1 :

W₂:

 W_3 :

 W_4 :

What is the run time of the Stable Matching Algorithm?

```
Initially all m in M and w in W are free

While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w) else

suppose (m<sub>2</sub>, w) is matched if w prefers m to m<sub>2</sub>

unmatch (m<sub>2</sub>, w)

match (m, w)
```

O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution