
9/30/2015 

1 

CSE 421 

Algorithms 

Richard Anderson    

Autumn 2015 

Lecture 1 

CSE 421 Course Introduction 

• CSE 421, Introduction to Algorithms 
– MWF, 1:30-2:20 pm 

– MGH 421 

• Instructor 
– Richard Anderson, anderson@cs.washington.edu 

– Office hours:  
• CSE 582 

• Office hours TBD 

• Teaching Assistants  
– Cyrus Rashtchian 

– Yueqi Sheng 

– Erin Yoon 

– Kuai Yu 

Announcements 

• It’s on the web. 

• Homework  due Wednesdays 

– HW 1, Due October 7, 2015  

– It’s on the web (or will be soon) 

• You should be on the course mailing list 

– But it will probably go to your uw.edu account 

 

Text book 

• Algorithm Design 

• Jon Kleinberg, Eva Tardos 

 

• Read Chapters 1 & 2 

 

• Expected coverage: 

– Chapter 1 through 7 

 

Course Mechanics 

• Homework 
– Due Wednesdays 

– About 5 problems,  sometimes programming 

– Target: 1 week turnaround on grading 

• Exams (In class) 
– Midterm,  Monday,  November 2 (probably) 

– Final, Monday, December 14, 2:30-4:20 pm 

• Approximate grade weighting 
– HW: 50, MT: 15, Final: 35 

• Course web 
– Slides, Handouts  

 

All of Computer Science is the 

Study of Algorithms 

 

mailto:anderson@cs.washington.edu
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How to study algorithms 

• Zoology 

• Mine is faster than yours is 

• Algorithmic ideas 

– Where algorithms apply 

– What makes an algorithm work 

– Algorithmic thinking 

Introductory Problem: 

Stable Matching 

• Setting: 

– Assign TAs to Instructors 

– Avoid having TAs and Instructors wanting 

changes 

• E.g., Prof A. would rather have student X than her 

current TA, and student X would rather work for 

Prof A. than his current instructor. 

Formal notions 

• Perfect matching 

• Ranked preference lists 

• Stability 

 

m1 w1 

m2 w2 

Example  (1 of 3) 

m1: w1 w2 

m2: w2 w1 

w1: m1 m2 

w2: m2 m1 

m1 

m2 w2 

w1 

Example  (2 of 3) 

m1: w1 w2 

m2: w1 w2 

w1: m1 m2 

w2: m1 m2 

m1 

m2 w2 

w1 

Example  (3 of 3) 

m1: w1 w2 

m2: w2 w1 

w1: m2 m1 

w2: m1 m2 

m1 

m2 w2 

w1 
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Formal Problem 

• Input 

– Preference lists for m1, m2, …, mn 

– Preference lists for w1, w2, …, wn 

• Output 

– Perfect matching M satisfying stability 

property: 

If (m’, w’)  M and (m’’, w’’)  M then 

 (m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’) 
  

Idea for an Algorithm 

m proposes to w 

If w is unmatched, w accepts 

If w is matched to m2 

If w prefers m to m2 w accepts m, dumping m2 

If w prefers m2 to m, w rejects m 

 

Unmatched m proposes to the highest w on 

its preference list that it has not already 

proposed to 
 

Algorithm 

Initially all m in M and w in W are free 

While there is a free m 

 w highest on m’s list that m has not proposed to 

 if w is free, then match (m, w) 

 else  

                     suppose (m2, w) is matched 

  if w prefers m to m2 

   unmatch (m2, w) 

   match (m, w) 

Example 

m1: w1 w2 w3 

m2: w1 w3 w2 

m3: w1 w2 w3 

 

w1: m2 m3 m1 

w2: m3 m1 m2 

w3: m3 m1 m2 

 

m1 

m2 w2 

w1 

m3 w3 

Does this work? 

• Does it terminate? 

• Is the result a stable matching? 

 

• Begin by identifying invariants and 

measures of progress 

– m’s proposals get worse (have higher m-rank) 

– Once w is matched, w stays matched 

– w’s partners get better (have lower w-rank) 

Claim: If an m reaches the end of 

its list, then all the w’s are matched 
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Claim: The algorithm stops in at 

most n2 steps 

When the algorithms halts, every w 

is matched 

Why? 

 

 

 

 

 

Hence, the algorithm finds a perfect 
matching 

The resulting matching is stable 

Suppose 

  (m1, w1)  M, (m2, w2)  M 

m1 prefers w2 to w1 

 

 

How could this happen? 

  

m1 w1 

m2 w2 

Result 

• Simple, O(n2) algorithm to compute a 

stable matching 

• Corollary 

– A stable matching always exists 

 

A closer look 

Stable matchings are not necessarily fair 

m1:    w1   w2   w3 

m2:    w2   w3   w1 

m3:    w3   w1   w2 

 

w1:   m2   m3   m1 

w2:   m3   m1   m2 

w3:   m1   m2   m3 

m1 

m2 

m3 

w1 

w2 

w3 

How many stable matchings can you find? 

Algorithm under specified 

• Many different ways of picking m’s to propose 

• Surprising result 

– All orderings of picking free m’s give the same result 

 

• Proving this type of result 

– Reordering argument 

– Prove algorithm is computing something mores 

specific 

• Show property of the solution – so it computes a specific 

stable matching 
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Proposal Algorithm finds the best 

possible solution for M 

Formalize the notion of best possible solution: 

 (m, w) is valid if (m, w) is in some stable 

matching 

 best(m): the highest ranked w for m such that 

(m, w) is valid 

 S* = {(m, best(m)} 

 Every execution of the proposal algorithm 

computes S* 

Proof 

See the text book – pages 9 – 12 

 

Related result: Proposal algorithm is the 

worst case for W 

Algorithm is the M-optimal algorithm 

Proposal algorithms where w’s propose is 

W-Optimal 

 

Best choices for one side may be 

bad for the other 

Design a configuration for 

problem of size 4: 

M proposal algorithm: 

All m’s get first choice, all w’s 

get last choice 

W proposal algorithm: 

All w’s get first choice, all m’s 

get last choice 

m1: 

 

m2: 

 

m3: 

 

m4: 

 

 

w1: 

 

w2: 

 

w3: 

 

w4: 

 

But there is a stable second choice 

Design a configuration for 

problem of size 4: 

M proposal algorithm: 

All m’s get first choice, all w’s 

get last choice 

W proposal algorithm: 

All w’s get first choice, all m’s 

get last choice 

There is a stable matching 

where everyone gets their 

second choice 

m1: 

 

m2: 

 

m3: 

 

m4: 

 

 

w1: 

 

w2: 

 

w3: 

 

w4: 

 

Key ideas 

• Formalizing real world problem 
– Model: graph and preference lists 

– Mechanism: stability condition 

• Specification of algorithm with a natural 
operation 
– Proposal 

• Establishing termination of process through 
invariants and progress measure 

• Under specification of algorithm 

• Establishing uniqueness of solution 

 


