
9/30/2015

1

CSE 421

Algorithms

Richard Anderson

Autumn 2015

Lecture 1

CSE 421 Course Introduction

• CSE 421, Introduction to Algorithms
– MWF, 1:30-2:20 pm

– MGH 421

• Instructor
– Richard Anderson, anderson@cs.washington.edu

– Office hours:
• CSE 582

• Office hours TBD

• Teaching Assistants
– Cyrus Rashtchian

– Yueqi Sheng

– Erin Yoon

– Kuai Yu

Announcements

• It’s on the web.

• Homework due Wednesdays

– HW 1, Due October 7, 2015

– It’s on the web (or will be soon)

• You should be on the course mailing list

– But it will probably go to your uw.edu account

Text book

• Algorithm Design

• Jon Kleinberg, Eva Tardos

• Read Chapters 1 & 2

• Expected coverage:

– Chapter 1 through 7

Course Mechanics

• Homework
– Due Wednesdays

– About 5 problems, sometimes programming

– Target: 1 week turnaround on grading

• Exams (In class)
– Midterm, Monday, November 2 (probably)

– Final, Monday, December 14, 2:30-4:20 pm

• Approximate grade weighting
– HW: 50, MT: 15, Final: 35

• Course web
– Slides, Handouts

All of Computer Science is the

Study of Algorithms

mailto:anderson@cs.washington.edu

9/30/2015

2

How to study algorithms

• Zoology

• Mine is faster than yours is

• Algorithmic ideas

– Where algorithms apply

– What makes an algorithm work

– Algorithmic thinking

Introductory Problem:

Stable Matching

• Setting:

– Assign TAs to Instructors

– Avoid having TAs and Instructors wanting

changes

• E.g., Prof A. would rather have student X than her

current TA, and student X would rather work for

Prof A. than his current instructor.

Formal notions

• Perfect matching

• Ranked preference lists

• Stability

m1 w1

m2 w2

Example (1 of 3)

m1: w1 w2

m2: w2 w1

w1: m1 m2

w2: m2 m1

m1

m2 w2

w1

Example (2 of 3)

m1: w1 w2

m2: w1 w2

w1: m1 m2

w2: m1 m2

m1

m2 w2

w1

Example (3 of 3)

m1: w1 w2

m2: w2 w1

w1: m2 m1

w2: m1 m2

m1

m2 w2

w1

9/30/2015

3

Formal Problem

• Input

– Preference lists for m1, m2, …, mn

– Preference lists for w1, w2, …, wn

• Output

– Perfect matching M satisfying stability

property:

If (m’, w’) M and (m’’, w’’) M then

 (m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’)

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m2

If w prefers m to m2 w accepts m, dumping m2

If w prefers m2 to m, w rejects m

Unmatched m proposes to the highest w on

its preference list that it has not already

proposed to

Algorithm

Initially all m in M and w in W are free

While there is a free m

 w highest on m’s list that m has not proposed to

 if w is free, then match (m, w)

 else

 suppose (m2, w) is matched

 if w prefers m to m2

 unmatch (m2, w)

 match (m, w)

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

Does this work?

• Does it terminate?

• Is the result a stable matching?

• Begin by identifying invariants and

measures of progress

– m’s proposals get worse (have higher m-rank)

– Once w is matched, w stays matched

– w’s partners get better (have lower w-rank)

Claim: If an m reaches the end of

its list, then all the w’s are matched

9/30/2015

4

Claim: The algorithm stops in at

most n2 steps

When the algorithms halts, every w

is matched

Why?

Hence, the algorithm finds a perfect
matching

The resulting matching is stable

Suppose

 (m1, w1) M, (m2, w2) M

m1 prefers w2 to w1

How could this happen?

m1 w1

m2 w2

Result

• Simple, O(n2) algorithm to compute a

stable matching

• Corollary

– A stable matching always exists

A closer look

Stable matchings are not necessarily fair

m1: w1 w2 w3

m2: w2 w3 w1

m3: w3 w1 w2

w1: m2 m3 m1

w2: m3 m1 m2

w3: m1 m2 m3

m1

m2

m3

w1

w2

w3

How many stable matchings can you find?

Algorithm under specified

• Many different ways of picking m’s to propose

• Surprising result

– All orderings of picking free m’s give the same result

• Proving this type of result

– Reordering argument

– Prove algorithm is computing something mores

specific

• Show property of the solution – so it computes a specific

stable matching

9/30/2015

5

Proposal Algorithm finds the best

possible solution for M

Formalize the notion of best possible solution:

 (m, w) is valid if (m, w) is in some stable

matching

 best(m): the highest ranked w for m such that

(m, w) is valid

 S* = {(m, best(m)}

 Every execution of the proposal algorithm

computes S*

Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the

worst case for W

Algorithm is the M-optimal algorithm

Proposal algorithms where w’s propose is

W-Optimal

Best choices for one side may be

bad for the other

Design a configuration for

problem of size 4:

M proposal algorithm:

All m’s get first choice, all w’s

get last choice

W proposal algorithm:

All w’s get first choice, all m’s

get last choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

But there is a stable second choice

Design a configuration for

problem of size 4:

M proposal algorithm:

All m’s get first choice, all w’s

get last choice

W proposal algorithm:

All w’s get first choice, all m’s

get last choice

There is a stable matching

where everyone gets their

second choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

Key ideas

• Formalizing real world problem
– Model: graph and preference lists

– Mechanism: stability condition

• Specification of algorithm with a natural
operation
– Proposal

• Establishing termination of process through
invariants and progress measure

• Under specification of algorithm

• Establishing uniqueness of solution

