CSE 421 Course Introduction · CSE 421, Introduction to Algorithms - MWF, 1:30-2:20 pm **CSE 421** - MGH 421 Instructor Algorithms - Richard Anderson, anderson@cs.washington.edu - Office hours: • CSE 582 **Richard Anderson** Office hours TBD Teaching Assistants Autumn 2015 - Cyrus Rashtchian - Yueqi Sheng Lecture 1 - Erin Yoon – Kuai Yu

Announcements

- · It's on the web.
- Homework due Wednesdays
 HW 1, Due October 7, 2015
 - It's on the web (or will be soon)
- You should be on the course mailing list – But it will probably go to your uw.edu account

Text book Algorithm Design Jon Kleinberg, Eva Tardos

- Read Chapters 1 & 2
- Expected coverage: – Chapter 1 through 7

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Monday, November 2 (probably)
 - Final, Monday, December 14, 2:30-4:20 pm
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
- Course web
- Slides, Handouts

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- · Mine is faster than yours is
- · Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

- · Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

	Example	(2 of 3)	
m ₁ : w ₁ w ₂ m ₂ : w ₁ w ₂		m_{1}	⊖w ₁
w ₁ : m ₁ m ₂ w ₂ : m ₁ m ₂		m ₂ _	\bigcirc W ₂

	Example	(3 of 3)	
m ₁ : w ₁ w ₂ m ₂ : w ₂ w ₁ w ₄ : m ₂ m ₄		m₁⊙	○ W ₁
w ₁ : m ₂ m ₁ w ₂ : m ₁ m ₂		m ₂ ⊖	⊖ w ₂

Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for $w_1, w_2, ..., w_n$
- Output
 - Perfect matching M satisfying stability property:

If (m', w') ∈ M and (m'', w'') ∈ M then (m' prefers w' to w'') or (w'' prefers m'' to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts If w is matched to m_2 If w prefers m to m_2 w accepts m, dumping m_2 If w prefers m_2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Example					
m ₁ : w ₁ w ₂ w ₃ m ₂ : w ₁ w ₃ w ₂ m ₃ : w ₁ w ₂ w ₃	m ₁	⊖w ₁			
$w_1: m_2 m_3 m_1$ $w_2: m_3 m_1 m_2$	$m_2 \odot$	\bigcirc W ₂			
w ₃ : m ₃ m ₁ m ₂	m ₃ ()	\bigcirc W ₃			

Does this work?

- · Does it terminate?
- · Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 A stable matching always exists

Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:

(m, w) is valid if (m, w) is in some stable matching

best(m): the highest ranked w for m such that (m, w) is valid

 $S^* = \{(m, best(m))\}$

Every execution of the proposal algorithm computes S^{\star}

Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W

Algorithm is the M-optimal algorithm

Proposal algorithms where w's propose is W-Optimal

Best choices for one side may be bad for the other

Design a configuration for problem of size 4:	m₁: m₂:
M proposal algorithm: All m's get first choice, all w's get last choice	m ₃ :
W proposal algorithm: All w's get first choice, all m's act leat choice	m ₄ :
ger last choice	w ₁ : w ₂ :
	w ₃ : w ₄ :

But there is a stable second choice

Design a configuration for problem of size 4:	m ₁ : m ₂ :	
M proposal algorithm: All m's get first choice, all w's	- m ₃ :	
get last choice W proposal algorithm: All w's get first choice, all m's	m ₄ :	
get last choice There is a stable matching where even one gets their	w ₁ : w ₂ :	
second choice	w ₃ :	
	w ₄ :	

Key ideas

- Formalizing real world problem
 Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation

– Proposal

- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution