CSE 421

Algorithms
Richard Anderson
Autumn 2015
Lecture 1

CSE 421 Course Introduction

- CSE 421, Introduction to Algorithms
- MWF, 1:30-2:20 pm
- MGH 421
- Instructor
- Richard Anderson, anderson@cs.washington.edu
- Office hours:
- CSE 582
- Office hours TBD
- Teaching Assistants
- Cyrus Rashtchian
- Yueqi Sheng
- Erin Yoon
- Kuai Yu

Text book

- Algorithm Design
- Jon Kleinberg, Eva Tardos
- Read Chapters 1 \& 2

- Expected coverage:
- Chapter 1 through 7

All of Computer Science is the Study of Algorithms

- Homework
- Due Wednesdays
- About 5 problems, sometimes programming
- Target: 1 week turnaround on grading
- Exams (In class)
- Midterm, Monday, November 2 (probably)
- Final, Monday, December 14, 2:30-4:20 pm
- Approximate grade weighting
- HW: 50, MT: 15, Final: 35
- Course web
- Slides, Handouts

$\begin{aligned} & \mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2} \\ & \mathrm{~m}_{2}: \mathrm{w}_{1} \mathrm{w}_{2} \\ & \mathrm{w}_{1}: \mathrm{m}_{1} \mathrm{~m}_{2} \\ & \mathrm{w}_{2}: \mathrm{m}_{1} \mathrm{~m}_{2} \end{aligned}$	(2	
	$\mathrm{m}_{1} \bigcirc$	OW ${ }_{1}$
	$\mathrm{m}_{2} \mathrm{O}$	$\bigcirc \mathrm{W}_{2}$

How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
- Where algorithms apply
- What makes an algorithm work
- Algorithmic thinking

Introductory Problem: Stable Matching

- Setting:
- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
- E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability

Example (2 of 3)

Example (1 of 3)

$m_{1}: w_{1} w_{2}$	$m_{1} \bigcirc$	$\bigcirc w_{1}$
$m_{2}: w_{2} w_{1}$		
$w_{1}: m_{1} m_{2}$		
$w_{2}: m_{2} m_{1}$	$m_{2} \bigcirc$	w_{2}

Example (3 of 3)

$m_{1}: w_{1} w_{2}$	$m_{1} \bigcirc$	$\circ w_{1}$
$m_{2}: w_{2} w_{1}$		
$w_{1}: m_{2} m_{1}$		
$w_{2}: m_{1} m_{2}$	$m_{2} \bigcirc$	w_{2}

Formal Problem

- Input
- Preference lists for $m_{1}, m_{2}, \ldots, m_{n}$
- Preference lists for $w_{1}, w_{2}, \ldots, w_{n}$
- Output
- Perfect matching M satisfying stability property:
If $\left(m^{\prime}, w^{\prime}\right) \in M$ and ($\left.m^{\prime \prime}, w^{\prime \prime}\right) \in M$ then (m^{\prime} prefers w^{\prime} to $w^{\prime \prime}$) or ($w^{\prime \prime}$ prefers $m^{\prime \prime}$ to m^{\prime})

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
- m's proposals get worse (have higher m-rank)
- Once w is matched, w stays matched
- w's partners get better (have lower w-rank)

Idea for an Algorithm

m proposes to w
If w is unmatched, w accepts
If w is matched to m_{2}
If w prefers m to $m_{2} w$ accepts m, dumping m_{2}
If w prefers m_{2} to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

	Example	
$m_{1}: w_{1} w_{2} w_{3}$		
$m_{2}: w_{1} w_{3} w_{2}$	$m_{1} \bigcirc$	
$m_{3}: w_{1} w_{2} w_{3}$		
$w_{1}: m_{2} m_{3} m_{1}$		
$w_{2}: m_{3} m_{1} m_{2}$		
$w_{3}: m_{3} m_{1} m_{2}$		

Claim: If an m reaches the end of

 its list, then all the w's are matched
Claim: The algorithm stops in at most n^{2} steps

When the algorithms halts, every w is matched Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$\left(m_{1}, w_{1}\right) \in M,\left(m_{2}, w_{2}\right) \in M$
m_{1} prefers w_{2} to w_{1}

How could this happen?

A closer look

Stable matchings are not necessarily fair

A closer look		
Stable matchings are not necessarily fair		
$m_{1}: w_{1} w_{2} w_{3}$	(m)	(w.)
$\begin{array}{llll} m_{2}: & w_{2} & w_{3} & w_{1} \\ m_{3}: & w_{3} & w_{1} & w_{2} \end{array}$	m_{2}	(w_{2}
$w_{1}: m_{2} m_{3} m_{1}$ $w_{2}: m_{3} m_{1} m_{2}$ $w_{3}: m_{1} m_{2} m_{3}$	m_{3}	w_{3}
How many stable matchin		

Result

- Simple, $O\left(n^{2}\right)$ algorithm to compute a stable matching
- Corollary
- A stable matching always exists

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
- All orderings of picking free m's give the same result
- Proving this type of result
- Reordering argument
- Prove algorithm is computing something mores specific
- Show property of the solution - so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution: (m, w) is valid if (m, w) is in some stable matching
best(m): the highest ranked w for m such that (m, w) is valid
$S^{*}=\{(\mathrm{m}, \operatorname{best}(\mathrm{m})\}$
Every execution of the proposal algorithm computes S^{*}

Proof

See the text book - pages 9-12

Related result: Proposal algorithm is the worst case for W

Algorithm is the M-optimal algorithm Proposal algorithms where w's propose is W-Optimal

Best choices for one side may be	
bad for the other	
Design a configuration for	$m_{1}:$
problem of size 4:	$m_{2}:$
M proposal algorithm:	
Al m's get fist choice, all w's	$m_{3}:$
get last choice	$m_{4}:$
Wroposil algorithm:	
All ws get first choice, all m's	
get last choice	$w_{1}:$
	$w_{2}:$
	$w_{3}:$
	$w_{4}:$

But there is a stable second choice

Design a configuration for	$\mathrm{m}_{1}:$
problem of size 4:	
M proposal algorithm:	
\quadAll m's get first choice, all w's get last choice	$\mathrm{m}_{2}:$
W proposal algorithm:	$\mathrm{m}_{3}:$
All w's get first choice, all m's get last choice	$\mathrm{w}_{1}:$
There is a stable matching where everyone gets their second choice	$\mathrm{w}_{2}:$
	$\mathrm{w}_{3}:$
	$\mathrm{w}_{4}:$

Key ideas

- Formalizing real world problem
- Model: graph and preference lists
- Mechanism: stability condition
- Specification of algorithm with a natural operation
- Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

