CSE 421 Algorithms

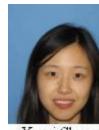
Richard Anderson Autumn 2015 Lecture 1

CSE 421 Course Introduction

- CSE 421, Introduction to Algorithms
 - MWF, 1:30-2:20 pm
 - MGH 421
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - CSE 582
 - Office hours TBD
- Teaching Assistants
 - Cyrus Rashtchian
 - Yueqi Sheng
 - Erin Yoon
 - Kuai Yu

Cyrus Rashtchian

Yejin Yoon



Yueqi Sheng

Kuai Yu

Announcements

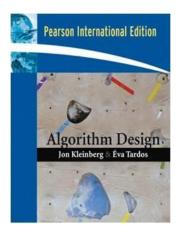
- It's on the web.
- Homework due Wednesdays
 HW 1, Due October 7, 2015
 It's on the web (or will be soon)
- You should be on the course mailing list
 But it will probably go to your uw.edu account

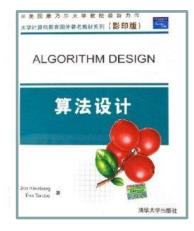
Text book

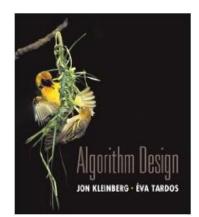
- Algorithm Design
- Jon Kleinberg, Eva Tardos

Read Chapters 1 & 2

Expected coverage:
 – Chapter 1 through 7







Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Monday, November 2 (probably)
 - Final, Monday, December 14, 2:30-4:20 pm
- Approximate grade weighting

 HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts

All of Computer Science is the Study of Algorithms

How to study algorithms

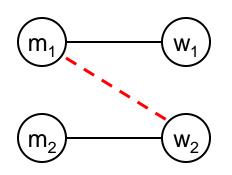
- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability



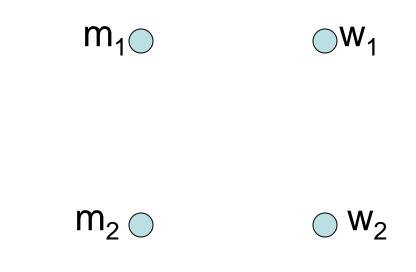
Example (1 of 3)

- $m_1: w_1 w_2$ m_1
 $m_2: w_2 w_1$ $w_1: m_1 m_2$
 $w_2: m_2 m_1$ m_2
- \bigcirc W₂

 $\bigcirc W_1$

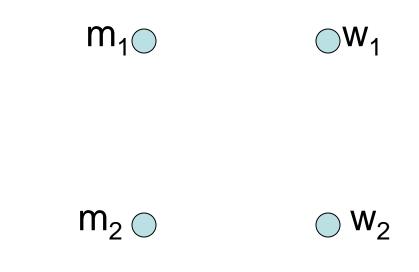
Example (2 of 3)

 $m_1: w_1 w_2$ $m_2: w_1 w_2$ $w_1: m_1 m_2$ $w_2: m_1 m_2$



Example (3 of 3)

 $m_1: w_1 w_2$ $m_2: w_2 w_1$ $w_1: m_2 m_1$ $w_2: m_1 m_2$



Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for $w_1, w_2, ..., w_n$
- Output
 - Perfect matching M satisfying stability property:

If (m', w') ∈ M and (m", w") ∈ M then
 (m' prefers w' to w") or (w" prefers m" to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

- If w is matched to m₂
 - If w prefers m to m_2 w accepts m, dumping m_2
 - If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

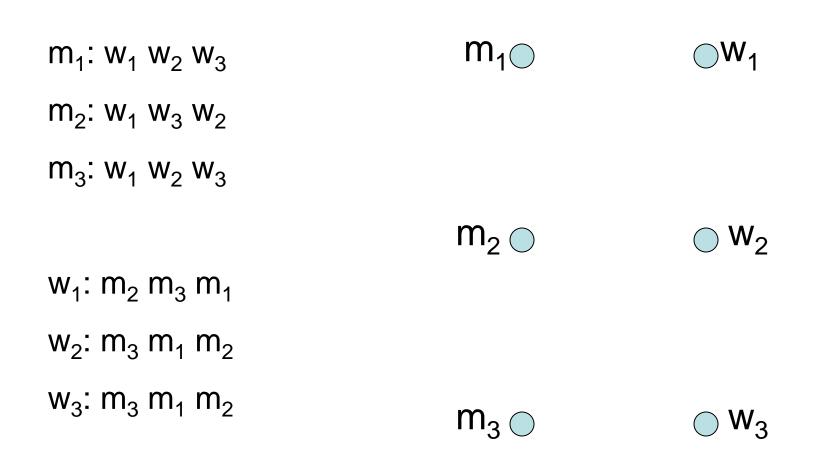
Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

else

suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Example



Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

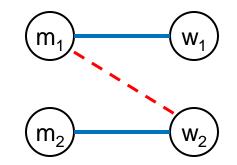
Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m₁ prefers w₂ to w₁



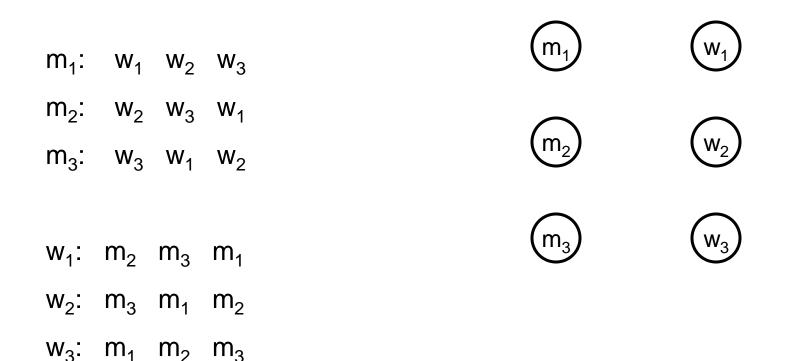
How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair



How many stable matchings can you find?

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result

- All orderings of picking free m's give the same result

- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:

- (m, w) is valid if (m, w) is in some stable matching
- best(m): the highest ranked w for m such that (m, w) is valid
- $S^* = \{(m, best(m))\}$
- Every execution of the proposal algorithm computes S*

Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W

Algorithm is the M-optimal algorithm

Proposal algorithms where w's propose is W-Optimal

Best choices for one side may be bad for the other

Design a configuration for	m ₁ :
problem of size 4:	m ₂ :
M proposal algorithm:	m ·
All m's get first choice, all w's get last choice	m ₃ :
W proposal algorithm:	m ₄ :
All w's get first choice, all m's	
get last choice	w ₁ :
	w ₂ :

W₃:

But there is a stable second choice

Design a configuration for problem of size 4:	m ₁ :
M proposal algorithm: All m's get first choice, all w's get last choice	m ₂ : m ₃ : m :
W proposal algorithm: All w's get first choice, all m's get last choice	m ₄ : w ₁ :
There is a stable matching where everyone gets their second choice	w ₂ : w ₃ :

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution