
University of Washington March 21, 2013
Department of Computer Science and Engineering
CSEP 521, Winter 2013

Exam Solution, Monday, March 18, 2013

NAME:

Instructions:

• Closed book, closed notes, no calculators

• Time limit: Two hours

• Answer the problems on the exam paper.

• If you need extra space use the back of a page

• Problems are not of equal difficulty, if you get stuck on
a problem, move on.

1 /15
2 /15
3 /10
4 /15
5 /15
6 /15
7 /15
8 /10

Total /110

Problem 1 (15 points) Short Answer:

a) How does the run time of finding a minimum cut compare with the run time for finding a
maximum flow?

Solution:

To find a minimum cut, we first find the maximum flow, and then find the set of reachable
vertices in the residual graph. This last step, can be done by a basic search algorithm in
O(n + m) time. Thus, if network flow can be solved in time f(n, m), then the min-cut can
be found in time f(n, m) + O(n + m) time. Since the time to compute a flow is much larger
than the other step, it is fair to say they can be computed in roughly the same time.

b) If you know problem X is NP-complete, and you want to show that problem Y is NP-complete,
do you reduce X to Y , or reduce Y to X. Justify your answer.

Solution:

You reduce from X to Y . To show that Y is NP-complete, you want to show that it is
“harder” than another NP-complete problem.

c) Yes, no, or maybe: There is a polynomial time algorithm for determining if an undirected
graph has a hamiltonian circuit? Justify your answer.

Solution:

Maybe. Hamiltonian Circuit is NP-Complete. However, since we don’t know if NP is different
from P, the answer is maybe. If there were an polynomial time algorithm for Hamiltonian
Circuit, then P=NP.

Problem 2 (15 points) Recurrences:

Give solutions to the following recurrences. Justify your answers.

a)

T (n) =

{
2T (n

2) + n3 if n > 1
1 if n = 1

Solution:

O(n3). The recurrence has a decreasing amount of work per level. The amount of work at
the top level is n3.

b)

T (n) =

{
4T (n

2) + n2 if n > 1
1 if n = 1

Solution:

O(n2 log n). The work remains the same on each level. The work per level is n2 and there
are log4 n = 1

2 log2 n levels.

c)

T (n) =

{
3T (n

2) + n if n > 1
1 if n = 1

Solution:

O(nlog2 3). The recurrence has an increasing amount of work per level, so the work is domi-
nated by the last level. The work on the bottom level is 3log2 n = 2log2 3 log2 n = nlog2 3.

Problem 3 (10 points) Residual Graph:

Consider the following flow graph G, with an assigned flow f . The pair x/y indicates that the edge
is carrying a flow x and has capacity y.

•

•

•

•

•

•

•

•�
�
�
�
�
�
��

7/14

-6/9
@
@
@
@
@
@
@R

4/9

-2/4�
�
�
�
�
�
��

5/10

-4/8�
�
�
�
�
�
��

2/9

-4/9

�
�
�
�
�
�
��

2/10

-9/12

@
@
@
@
@
@
@R

6/15

s t

a

b

c

d

e

f

a) Draw the residual graph Gf for the flow f .

•

•

•

•

•

•

•

•
s t

a

b

c

d

e

f

Solution:

We apply the standard contruction for the residual graph. If there is a flow of f and capaicty
c on the edge (u, v), we create an edge of capacity c− f from u to v, and an edge of capacity
f from v to u.

b) Show how the Ford-Fulkerson algorithm can find a maximum flow. List the paths that you
use to augment the flow.

Solution:

There are muliple ways of doing this. One set of augmenting paths:

2 : s, c, f, t
3 : s, c, e, t
2 : s, c, e, b, d, t
3 : s, b, d, t
4 : s, a, d, t

Problem 4 (15 points) How can you?:

Give short answers to the following. You do not need to discuss runtime. How can you:

a) Find a maximum weight spanning tree using an algorithm which computes a minimum weight
spanning tree.

Solution:

We multiply the weight of every edge by -1, and then compute a minimum spanning tree.

b) Determine if there is a path from a vertex s to every other vertex in a directed graph using
a network flow algorithm.

Solution:

We set this up as a flow problem by adding a sink t. We assign a capacity of ∞ to each of
the original edges in the graph and then add an edge (v, t) of capacity 1 for each vertex v in
the graph. If there is a flow of size n from s to t, then every vertex in the graph is reachable.

c) Find an optimal travelling salesman tour in a graph which may have negative length edges
with an algorithm for the travelling salesman problem that requires all edges have positive
length.

Solution:

Add a constant C to each edge to make it positive. Since the TSP tour as length n, this
changes the cost of the tour by Cn. If −m is the smallest edge in the graph, we can use
C = m + 1.

Problem 5 (15 points) Product-sum:

Given a list of n integers, v1, . . . , vn, the product-sum is the largest sum that can be formed by
multiplying adjacent elements in the list. Each element can be matched with at most one of its
neighbors. For example, given the list 1, 2, 3, 1 the product sum is 8 = 1 + (2 × 3) + 1, and given
the list 2, 2, 1, 3, 2, 1, 2, 2, 1, 2 the product sum is 19 = (2× 2) + 1 + (3× 2) + 1 + (2× 2) + 1 + 2.

a) Compute the product-sum of 1, 4, 3, 2, 3, 4, 2.

29 = 1 + (4× 3) + 2 + (3× 4) + 2.

b) Give the optimization formula for computing the product-sum of the first j elements.

OPT [j] =


max{OPT [j − 1] + vj , OPT [j − 2] + vj ∗ vj−1} if j ≥ 2
v1 if j = 1
0 if j = 0

c) Give a dynamic program for computing the value of the product sum of a list of integers.
(You do not need to determine which pairs are multiplies together - just the product.)

Prod-Sum(int[]v, n)
if (n == 0) return 0;
int [] OPT = new int [n + 1];
OPT [0] = 0;
OPT [1] = v[1];
for int j = 2 to n

OPT [j] = max(OPT [j − 1] + v[j], OPT [j − 2] + v[j] ∗ v[j − 1]);
return OPT [n];

Problem 6 (15 points) Electoral college:
The problem is to determine the set of states with the smallest total population that can provide
the votes to win the electoral college. Formally, the problem is:

Let pi be the population of state i, and vi the number of electoral votes for state i. All electoral
votes of a state go to a single candidate, so the winning candidate is the one who receives at least
V electoral votes, where V = b(

∑
i vi)/2c+ 1. Our goal is to find a set of states S that minimizes

the value of
∑

i∈S pi subject to the constraint that
∑

i∈S vi ≥ V .

a) The dynamic programming solution for this problem involves computing a function OPT
where OPT [i, v] gives the minimum populations of a set of states from 1, 2, . . . , i such that
their votes sum to exactly v. Give a recursive definition of OPT and an explanation as to
why it is correct.

OPT [i, v] = min{OPT [i− 1, v], OPT [i− 1, v − vi] + pi}. The first term corresponds to state
i not included in the vote total, and the second term corresponds to the state i included in
the vote total.

b) What are the base cases for your function OPT .

OPT [0, 0] = 0 and OPT [0, v] =∞ for v ≥ 1.

Grading notes. Part A, 9 Points. Part B, 6 Points. The most common error was to give a
base case of 0.

Problem 7 (15 points) Currency Conversion:
A group of traders are leaving Switzerland, and need to convert their Francs (the local currency)
into various international currencies. There are n traders and m currencies. Trader i has Ti Francs
to convert. The bank has Bj Francs worth of currency j. Trader i is willing to trade as much as Cij

of his Francs for currency j. (For example, a trader with 1000 Francs might be willing to convert
up to 700 of his Francs for USD, up to 500 of his Francs for Japaneses Yen, and up to 500 of his
Francs for Euros).

Assuming that all traders give their requests to the bank at the same time, describe an algorithm
that the bank can use to satisfy the requests (if it can).

Solution:
This is set up as a flow network, with Francs flowing from the source s to the sink t. A row of
vertices t1, . . . , tn represents the traders, and a row of vertices b1, . . . , bm represents the currency
held by the bank. The edge (s, ti) has capacity Ti which gives the amount trader i wants to change.
The edge (ti, bj) has capacity Cij giving the maximum number of Francs i wants to trade into
currency j. Finally, the edge (bj , t) with capacity Bj gives the limit on the amount of currency
j that is available. If there is a flow f in the network with |f | =

∑
i Ti then all traders are able

to convert their currencies. (An alternate solution which reverses the source and sink, and has
currency flow to from the banks to traders is also valid.)

Problem 8 (10 points) 4SAT:
Show that the 4SAT problem is NP-complete by giving a reduction from 3SAT. 4SAT is the
satisfiability problem with exactly four literals per clause. You do not need to show that 4SAT is
in NP.

Solution:

The simplest reduction from 3SAT to 4SAT is just to duplicate a literal in each clause, e.g.,

(x ∨ y ∨ z) =⇒ (x ∨ y ∨ z ∨ z).

An alternate approach is to add a variable to each clause that is set to false:

(x ∨ y ∨ z) =⇒ (x ∨ y ∨ z ∨ a),

where the additional clause
(a ∨ a ∨ a ∨ a)

forces a to false. (Repeated literals can be avoided by using a group of eight additional clauses to
false a to false).

Grading notes: Just adding the constant F to a clause was -2, since it is technically not a literal.
Points were also lost for confusing ∨ and ∧.

