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CSE 421: Algorithms 

Winter 2014 

Lecture 9: MSTs and shortest paths 

 

Reading:  Sections 4.1-4.5 

review: scheduling to minimize lateness 

 

 

Example: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

lateness = 0 lateness = 2 
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minimizing lateness: inversions 

• Definition.  An inversion in schedule S is a pair of jobs i and 

j such that  di < dj but j scheduled before i. 

 

 

 

 

• Claim.  Swapping two adjacent, inverted jobs reduces the 

number of inversions by one and does not increase the 

max lateness. 

 

i j 

i j 

before swap 

after swap 

f'j 

fi 
inversion 

optimal schedules and inversions 

• Claim: There is an optimal schedule with no idle 

time and no inversions 

• Proof: 

– By previous argument there is an optimal schedule 

O with no idle time 

– If O has an inversion then it has a consecutive pair 

of requests in its schedule that are inverted and 

can be swapped without increasing lateness 
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optimal schedules and inversions 

Eventually these swaps will produce an optimal 

schedule with no inversions 

– Each swap decreases the number of inversions by 1 

– There are a bounded number of (at most  n(n-1)/2) 

inversions (we only care that this is finite.) 

 

QED 

minimum spanning trees (or forests) 

• Given an undirected graph G=(V,E) with each edge 

e having a weight w(e) 

 

• Find a subgraph T of G of minimum total weight 

s.t. every pair of vertices connected in G are also 

connected in T 

– if G is connected then T is a tree otherwise it is a 

forest 

weighted undirected graph 

2 

7 

-1 

4 
3 

4 

5 

1 
3 

5 
8 

6 

9 
4 

5 
7 9 

8 

greedy algorithm 

Prim’s Algorithm: 

– start at a vertex s 

– add the cheapest edge adjacent to s 

– repeatedly add the cheapest edge that joins the 

vertices explored so far to the rest of the graph 
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prim’s algorithm 

Prim(G,w,s) 

 S  {s} 

 

 while SV do 

 of all edges e=(u,v) s.t. vS and uS  select* one with 
the minimum value of w(e) 

 SS {v} 

 pred[v]u 
  

*For each vS maintain small[v]=minimum value of w(e) 
over all vertices uS s.t. e=(u,v) is in of G 

second greedy algorithm 

Kruskal’s Algorithm 

– Start with the vertices and no edges 

– Repeatedly add the cheapest edge that joins 

two different components, i.e. that doesn’t 

create a cycle 

 

weighted undirected graph 
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why greed is good 

• Definition:  Given a graph G=(V,E), a cut of G is a 

partition of V into two non-empty pieces,  S and V-S 

 

• Lemma:  For every cut (S,V-S) of G, there is a 

minimum spanning tree (or forest) containing any 

cheapest edge crossing the cut, i.e. connecting 

some node in S with some node in V-S.  

– call such an edge safe 
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cuts and spanning trees 
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the greedy algorithms always choose safe edges 

Prim’s Algorithm 

 

the greedy algorithms always choose safe edges 

Prim’s Algorithm 

– Always chooses cheapest edge from current 

tree to rest of the graph 

– This is cheapest edge across a cut which has 

the vertices of that tree on one side.  

 

prim’s algorithm 
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the greedy algorithms always choose safe edges 

Kruskal’s Algorithm 

the greedy algorithms always choose safe edges 

Kruskal’s Algorithm 

– Always chooses cheapest edge connecting two 

pieces of the graph that aren’t yet connected 

– This is the cheapest edge across any cut which 

has those two pieces on different sides and 

doesn’t split any current pieces.  

 

kruskal’s algorithm 
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kruskal’s algorithm 
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proof of lemma: exchange argument 

Suppose you have an MST not using cheapest edge e 

e 

u 
v 

Endpoints of e, u and v must be connected in T 

proof of lemma 

e 
u 

v 

Endpoints of e, u and v must be connected in T 

Suppose you have an MST T not using cheapest edge e 

proof of lemma 

e 
u 

v 

Endpoints of e, u and v must be connected in T 

Suppose you have an MST T not using cheapest edge e 

h 

𝑤 𝑒   𝑤(ℎ) 

proof of lemma 

e 
u 

v 

Endpoints of e, u and v must be connected in T 

Suppose you have an MST T not using cheapest edge e 

h 

𝑤 𝑒   𝑤(ℎ) 
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implementation and analysis (kruskal) 

• First sort the edges by weight O(m log m) 

• Go through edges from smallest to largest 

– if endpoints of edge e are currently in different 

components  

then add to the graph 

else skip 

• Union-find data structure handles last part 

• Total cost of last part: O(m a(n)) where          
a(n)<< log m 

• Overall O(m log n) 

union-find disjoint sets data structure 

• Maintaining components 

– start with n different components  

one per vertex 

– find components of the two endpoints of e 

2m finds 

– union two components when edge connecting 

them is added 

n-1 unions 

prim’s algorithm with priority queues 

• For each vertex u not in tree maintain current 

cheapest edge from tree to u 

– Store u in priority queue with key = weight of 

this edge 

• Operations:   

– n-1 insertions (each vertex added once) 

– n-1 delete-mins (each vertex deleted once) 

pick the vertex of smallest key, remove it from the p.q. 
and add its edge to the graph 

– < m decrease-keys (each edge updates one vertex) 

prim’s algorithm with priority queues 

• Priority queue implementations 

– Array 

insert O(1), delete-min O(n), decrease-key O(1) 

total O(n+n2+m)=O(n2) 

– Heap 

insert, delete-min, decrease-key all O(log n) 

total O(m log n) 

– d-Heap  (d=m/n) 

insert, decrease-key O(logm/n n) 

delete-min O((m/n) logm/n n) 

total O(m logm/n n) 
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an application 

Minimum cost network design: 

– Build a network to connect all locations {v1,…,vn} 

– Cost of connecting vi to vj is w(vi,vj)0 

– Choose a collection of links to create that will 
be as cheap as possible 

– Any minimum cost solution is an MST 

If there is a solution containing a cycle then we can 
remove any edge and get a cheaper solution 

application #2 

Maximum Spacing Clustering 
– Given  

a collection U of n objects {p1,…,pn} 
Distance measure d(pi,pj) satisfying 

d(pi,pi)=0 
d(pi,pj)0 for ij 
d(pi,pj)=d(pj,pi) 

Positive integer kn 
– Find a k-clustering, i.e. partition of U into k clusters 

    C1,…,Ck, such that the spacing between the clusters is as    

    large possible where 

 spacing = min{d(pi,pj): pi and pj in different clusters} 

greedy algorithm 

• Start with n clusters each consisting of a single point 

• Repeatedly find the closest pair of points in different 
clusters under distance d and merge their clusters until 
only k clusters remain 

 

• Gets the same components as Kruskal’s Algorithm does! 

– The sequence of closest pairs is exactly the MST 

• Alternatively we could run Kruskal’s algorithm once and for 
any k we could get the maximum spacing  k-clustering by 
deleting the k-1 most expensive edges 

 

proof 

• Removing the k-1 most expensive edges from an MST 
yields k components C1,…,Ck and the spacing for them is 
precisely the cost d* of the k-1st most expensive edge in 
the tree 

 

• Consider any other k-clustering C’1,…,C’k 

– Since they are different and cover the same set of points there is 
some pair of points pi,pj such that pi,pj are in some cluster Cr but pi, 
pj are in different clusters C’s and C’t 

Since pi,pj Cr, pi and pj have a path between them all of whose 
edges have distance at most d* 

This path must cross between clusters in the C’ clustering so the 
spacing in C’ is at most d* 
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single-source shortest paths 

• Given an (un)directed graph G=(V,E) with each 

edge e having a non-negative weight w(e) and a 

vertex v 

 

• Find length of shortest paths from v to each vertex 

in G 

 

a greedy algorithm 

Dijkstra’s Algorithm: 

– Maintain a set S of vertices whose shortest paths are 

known 

initially S={s} 

– Maintaining current best lengths of paths that only go 

through S to each of the vertices in G 

path-lengths to elements of S will be right,  to V-S they 
might not be right 

– Repeatedly add vertex v to S that has the shortest 

tentative distance of any vertex in V-S  

update path lengths based on new paths through v 

Dijkstra’s algorithm 

Dijkstra(G,w,s) 

 S{s} 

 d[s]0 

 while SV do 

 of all edges e=(u,v) s.t. vS and uS select* one with 
the minimum value of d[u]+w(e) 

 SS {v} 

 d[v]d[u]+w(e) 

 pred[v]u 
  

*For each vS maintain d’[v]=minimum value of d[u]+w(e) 
over all vertices uS s.t. e=(u,v) is in of G 

Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Add to S 

Dijkstra’s Algorithm 
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Update distances 

Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Add to S 

Dijkstra’s Algorithm Correctness 

Suppose all distances to vertices in S are correct 

and u has smallest current value in V-S 

  d’(v) d’(x) 

x-v path length  0 

distance value of vertex in V-S=length of shortest path from s 

 with only last edge leaving S  

s 

v 

x 
S Suppose some other 

path to v and x= first vertex  

on this path not in S 

 other path is longer 

Therefore adding v to S keeps correct distances 
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Dijkstra’s Algorithm Correctness 

s 

v 

x 

S 

Dijkstra’s Algorithm 

• Algorithm also produces a tree of shortest 

paths to v following pred links 

– From w follow its ancestors in the tree back to v 

 

• If all you care about is the shortest path 

from v to w simply stop the algorithm when 

w is added to S 

Implementing Dijkstra’s Algorithm 

• Need to  

– keep current distance values for nodes in V-S 

– find minimum current distance value 

– reduce distances when vertex moved to S 

data structure review 

• Priority Queue: 
– Elements each with an associated key 

– Operations 

Insert 
Find-min 

Return the element with the smallest key 

Delete-min 
Return the element with the smallest key and delete it from the data structure 

Decrease-key 
Decrease the key value of some element 
 

• Implementations 
– Arrays:   O(n) time find/delete-min,  O(1) time insert/    

                    decrease-key 

– Heaps:  O(log n) time insert/decrease-key/delete-min, O(1) time  
        find-min 
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Dijkstra’s algorithm with priority queues 

• For each vertex u not in tree maintain cost of 

current cheapest path through tree to u 

– Store u in priority queue with key = length of 

this path 

• Operations:   

– n-1 insertions (each vertex added once) 

– n-1 delete-mins (each vertex deleted once) 

pick the vertex of smallest key, remove it from the 
priority queue and add its edge to the graph 

– <m decrease-keys (each edge updates one vertex) 

Dijkstra’s algorithm with priority queues 

Priority queue implementations 

– Array 

insert O(1), delete-min O(n), decrease-key O(1) 

total O(n+n2+m)=O(n2) 

– Heap 

insert, delete-min, decrease-key all O(log n) 

total O(m log n) 

– d-Heap  (d=m/n) 

insert, decrease-key O(logm/n n) 

delete-min O((m/n) logm/n n) 

total O(m logm/n n) 

Dijskstra’s algorithm with priority queues 


