
1/26/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 9: MSTs and shortest paths

Reading: Sections 4.1-4.5

review: scheduling to minimize lateness

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

minimizing lateness: inversions

• Definition. An inversion in schedule S is a pair of jobs i and

j such that di < dj but j scheduled before i.

• Claim. Swapping two adjacent, inverted jobs reduces the

number of inversions by one and does not increase the

max lateness.

i j

i j

before swap

after swap

f'j

fi
inversion

optimal schedules and inversions

• Claim: There is an optimal schedule with no idle

time and no inversions

• Proof:

– By previous argument there is an optimal schedule

O with no idle time

– If O has an inversion then it has a consecutive pair

of requests in its schedule that are inverted and

can be swapped without increasing lateness

1/26/2014

2

optimal schedules and inversions

Eventually these swaps will produce an optimal

schedule with no inversions

– Each swap decreases the number of inversions by 1

– There are a bounded number of (at most n(n-1)/2)

inversions (we only care that this is finite.)

QED

minimum spanning trees (or forests)

• Given an undirected graph G=(V,E) with each edge

e having a weight w(e)

• Find a subgraph T of G of minimum total weight

s.t. every pair of vertices connected in G are also

connected in T

– if G is connected then T is a tree otherwise it is a

forest

weighted undirected graph

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7 9

8

greedy algorithm

Prim’s Algorithm:

– start at a vertex s

– add the cheapest edge adjacent to s

– repeatedly add the cheapest edge that joins the

vertices explored so far to the rest of the graph

1/26/2014

3

prim’s algorithm

Prim(G,w,s)

 S  {s}

 while SV do

 of all edges e=(u,v) s.t. vS and uS select* one with
the minimum value of w(e)

 SS {v}

 pred[v]u

*For each vS maintain small[v]=minimum value of w(e)
over all vertices uS s.t. e=(u,v) is in of G

second greedy algorithm

Kruskal’s Algorithm

– Start with the vertices and no edges

– Repeatedly add the cheapest edge that joins

two different components, i.e. that doesn’t

create a cycle

weighted undirected graph

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7 9

8

why greed is good

• Definition: Given a graph G=(V,E), a cut of G is a

partition of V into two non-empty pieces, S and V-S

• Lemma: For every cut (S,V-S) of G, there is a

minimum spanning tree (or forest) containing any

cheapest edge crossing the cut, i.e. connecting

some node in S with some node in V-S.

– call such an edge safe

1/26/2014

4

cuts and spanning trees

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7 9

8

the greedy algorithms always choose safe edges

Prim’s Algorithm

the greedy algorithms always choose safe edges

Prim’s Algorithm

– Always chooses cheapest edge from current

tree to rest of the graph

– This is cheapest edge across a cut which has

the vertices of that tree on one side.

prim’s algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7 9

8

1/26/2014

5

the greedy algorithms always choose safe edges

Kruskal’s Algorithm

the greedy algorithms always choose safe edges

Kruskal’s Algorithm

– Always chooses cheapest edge connecting two

pieces of the graph that aren’t yet connected

– This is the cheapest edge across any cut which

has those two pieces on different sides and

doesn’t split any current pieces.

kruskal’s algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7 9

8

kruskal’s algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7 9

8

1/26/2014

6

proof of lemma: exchange argument

Suppose you have an MST not using cheapest edge e

e

u
v

Endpoints of e, u and v must be connected in T

proof of lemma

e
u

v

Endpoints of e, u and v must be connected in T

Suppose you have an MST T not using cheapest edge e

proof of lemma

e
u

v

Endpoints of e, u and v must be connected in T

Suppose you have an MST T not using cheapest edge e

h

𝑤 𝑒  𝑤(ℎ)

proof of lemma

e
u

v

Endpoints of e, u and v must be connected in T

Suppose you have an MST T not using cheapest edge e

h

𝑤 𝑒  𝑤(ℎ)

1/26/2014

7

implementation and analysis (kruskal)

• First sort the edges by weight O(m log m)

• Go through edges from smallest to largest

– if endpoints of edge e are currently in different

components

then add to the graph

else skip

• Union-find data structure handles last part

• Total cost of last part: O(m a(n)) where
a(n)<< log m

• Overall O(m log n)

union-find disjoint sets data structure

• Maintaining components

– start with n different components

one per vertex

– find components of the two endpoints of e

2m finds

– union two components when edge connecting

them is added

n-1 unions

prim’s algorithm with priority queues

• For each vertex u not in tree maintain current

cheapest edge from tree to u

– Store u in priority queue with key = weight of

this edge

• Operations:

– n-1 insertions (each vertex added once)

– n-1 delete-mins (each vertex deleted once)

pick the vertex of smallest key, remove it from the p.q.
and add its edge to the graph

– < m decrease-keys (each edge updates one vertex)

prim’s algorithm with priority queues

• Priority queue implementations

– Array

insert O(1), delete-min O(n), decrease-key O(1)

total O(n+n2+m)=O(n2)

– Heap

insert, delete-min, decrease-key all O(log n)

total O(m log n)

– d-Heap (d=m/n)

insert, decrease-key O(logm/n n)

delete-min O((m/n) logm/n n)

total O(m logm/n n)

1/26/2014

8

an application

Minimum cost network design:

– Build a network to connect all locations {v1,…,vn}

– Cost of connecting vi to vj is w(vi,vj)0

– Choose a collection of links to create that will
be as cheap as possible

– Any minimum cost solution is an MST

If there is a solution containing a cycle then we can
remove any edge and get a cheaper solution

application #2

Maximum Spacing Clustering
– Given

a collection U of n objects {p1,…,pn}
Distance measure d(pi,pj) satisfying

d(pi,pi)=0
d(pi,pj)0 for ij
d(pi,pj)=d(pj,pi)

Positive integer kn
– Find a k-clustering, i.e. partition of U into k clusters

 C1,…,Ck, such that the spacing between the clusters is as

 large possible where

 spacing = min{d(pi,pj): pi and pj in different clusters}

greedy algorithm

• Start with n clusters each consisting of a single point

• Repeatedly find the closest pair of points in different
clusters under distance d and merge their clusters until
only k clusters remain

• Gets the same components as Kruskal’s Algorithm does!

– The sequence of closest pairs is exactly the MST

• Alternatively we could run Kruskal’s algorithm once and for
any k we could get the maximum spacing k-clustering by
deleting the k-1 most expensive edges

proof

• Removing the k-1 most expensive edges from an MST
yields k components C1,…,Ck and the spacing for them is
precisely the cost d* of the k-1st most expensive edge in
the tree

• Consider any other k-clustering C’1,…,C’k

– Since they are different and cover the same set of points there is
some pair of points pi,pj such that pi,pj are in some cluster Cr but pi,
pj are in different clusters C’s and C’t

Since pi,pj Cr, pi and pj have a path between them all of whose
edges have distance at most d*

This path must cross between clusters in the C’ clustering so the
spacing in C’ is at most d*

1/26/2014

9

single-source shortest paths

• Given an (un)directed graph G=(V,E) with each

edge e having a non-negative weight w(e) and a

vertex v

• Find length of shortest paths from v to each vertex

in G

a greedy algorithm

Dijkstra’s Algorithm:

– Maintain a set S of vertices whose shortest paths are

known

initially S={s}

– Maintaining current best lengths of paths that only go

through S to each of the vertices in G

path-lengths to elements of S will be right, to V-S they
might not be right

– Repeatedly add vertex v to S that has the shortest

tentative distance of any vertex in V-S

update path lengths based on new paths through v

Dijkstra’s algorithm

Dijkstra(G,w,s)

 S{s}

 d[s]0

 while SV do

 of all edges e=(u,v) s.t. vS and uS select* one with
the minimum value of d[u]+w(e)

 SS {v}

 d[v]d[u]+w(e)

 pred[v]u

*For each vS maintain d’[v]=minimum value of d[u]+w(e)
over all vertices uS s.t. e=(u,v) is in of G

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

1/26/2014

10

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

1/26/2014

11

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

1/26/2014

12

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

1/26/2014

13

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

1/26/2014

14

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

1/26/2014

15

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm Correctness

Suppose all distances to vertices in S are correct

and u has smallest current value in V-S

 d’(v) d’(x)

x-v path length  0

distance value of vertex in V-S=length of shortest path from s

 with only last edge leaving S

s

v

x
S Suppose some other

path to v and x= first vertex

on this path not in S

 other path is longer

Therefore adding v to S keeps correct distances

1/26/2014

16

Dijkstra’s Algorithm Correctness

s

v

x

S

Dijkstra’s Algorithm

• Algorithm also produces a tree of shortest

paths to v following pred links

– From w follow its ancestors in the tree back to v

• If all you care about is the shortest path

from v to w simply stop the algorithm when

w is added to S

Implementing Dijkstra’s Algorithm

• Need to

– keep current distance values for nodes in V-S

– find minimum current distance value

– reduce distances when vertex moved to S

data structure review

• Priority Queue:
– Elements each with an associated key

– Operations

Insert
Find-min

Return the element with the smallest key

Delete-min
Return the element with the smallest key and delete it from the data structure

Decrease-key
Decrease the key value of some element

• Implementations
– Arrays: O(n) time find/delete-min, O(1) time insert/

 decrease-key

– Heaps: O(log n) time insert/decrease-key/delete-min, O(1) time
 find-min

1/26/2014

17

Dijkstra’s algorithm with priority queues

• For each vertex u not in tree maintain cost of

current cheapest path through tree to u

– Store u in priority queue with key = length of

this path

• Operations:

– n-1 insertions (each vertex added once)

– n-1 delete-mins (each vertex deleted once)

pick the vertex of smallest key, remove it from the
priority queue and add its edge to the graph

– <m decrease-keys (each edge updates one vertex)

Dijkstra’s algorithm with priority queues

Priority queue implementations

– Array

insert O(1), delete-min O(n), decrease-key O(1)

total O(n+n2+m)=O(n2)

– Heap

insert, delete-min, decrease-key all O(log n)

total O(m log n)

– d-Heap (d=m/n)

insert, decrease-key O(logm/n n)

delete-min O((m/n) logm/n n)

total O(m logm/n n)

Dijskstra’s algorithm with priority queues

