
1/25/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 8: Greedy algorithms II

Reading: Sections 4.1-4.5

Don’t Forget:

Industry Affiliates Recruiting Fairs
are next Tuesday (1/28) and Wednesday (1/29)!

Please pick up your name badge & lanyard in

advance.
Where: Main Office

When: Friday or Monday, 10:30-11:30 am or 1:30-3 pm

 or Tuesday morning, 10:30-11:30 am.

Over 60 companies will be represented, including:

interval partitioning

• Interval partitioning.

– Lecture j starts at sj and finishes at fj.

– Goal: find minimum number of classrooms to schedule all

 lectures so that no two occur at the same time in the same room.

• Example: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

interval partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

• Interval partitioning.

– Lecture j starts at sj and finishes at fj.

– Goal: find minimum number of classrooms to schedule all

 lectures so that no two occur at the same time in the same room.

• Example: This schedule uses only 3 classrooms.

1/25/2014

2

lower bound on optimal solutions

• Definition. The depth of a set of open intervals is the maximum number that
contain any given time.

• Key observation. Number of classrooms needed  depth.

• Ex: Depth of schedule below = 3  schedule below is optimal.

• Q. Does there always exist a schedule equal to depth of intervals?

Time

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

a simple greedy algorithm

Sort requests in increasing order of start times

 (s1,f1),…,(sn,fn)

For i=1 to n

 j1

 While (request i not scheduled)

 lastj finish time of the last request

 currently scheduled on resource j

 if silastj then schedule request i on resource j

 jj+1

 End While

End For

interval partitioning: greedy analysis

• Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom.

interval partitioning: greedy analysis

• Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom.

• Theorem. Greedy algorithm is optimal.

• Proof.

– Let d = number of classrooms that the greedy algorithm
allocates.

– Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 other classrooms.

– Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than sj.

– Thus, we have d lectures overlapping at time sj + .

– Key observation  all schedules use  d classrooms. ▪

1/25/2014

3

a simple greedy algorithm

Sort requests in increasing order of start times

 (s1,f1),…,(sn,fn)

For i=1 to n

 j1

 While (request i not scheduled)

 lastj finish time of the last request

 currently scheduled on resource j

 if silastj then schedule request i on resource j

 jj+1

 End While

End For

O(n log n) time

May be slow: O(nd)

which could be Ω(n2)

a simple greedy algorithm

Sort requests in increasing order of start times

 (s1,f1),…,(sn,fn)

For i=1 to n

 j1

 While (request i not scheduled)

 lastj finish time of the last request

 currently scheduled on resource j

 if silastj then schedule request i on resource j

 jj+1

 End While

End For

O(n log n) time

a more efficient implementation

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

d  1

Schedule request 1 on resource 1

last1f1

Insert 1 into priority queue Q with key = last1

For i=2 to n

 j findmin(Q)

 if silastj then

 schedule request i on resource j

 lastj  fi

 Increasekey(j,Q) to lastj

 else

 d  d+1

 schedule request i on resource d

 lastdfi

 Insert d into priority queue Q with key = lastd

End For

O(n log n) time

O(n log d)

O(n log n)

greedy analysis strategies

• Greedy algorithm stays ahead. Show that after each step
of the greedy algorithm, its solution is at least as good as
any other algorithm's.

• Exchange argument. Gradually transform any solution to
the one found by the greedy algorithm without hurting its
quality.

• Structural. Discover a simple "structural" bound asserting
that every possible solution must have a certain value.
Then show that your algorithm always achieves this bound.

1/25/2014

4

scheduling to minimize lateness

Scheduling to minimize lateness
– Single resource as in interval scheduling but instead of start and

finish times request i has

Time requirement ti which must be scheduled in a contiguous block
Target deadline di by which time the request would like to be
finished
Overall start time s

– Requests are scheduled by the algorithm into time intervals [si,fi]
such that ti=fi-si

– Lateness of schedule for request i is

If di  fi then request i is late by Li= fi-di otherwise its lateness Li= 0
– Maximum lateness L=maxi Li

– Goal: Find a schedule for all requests (values of si and fi for each
request i) to minimize the maximum lateness, L

scheduling to minimize lateness

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

minimizing lateness: greedy algorithms

• Greedy template. Consider jobs in some order.

– [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

– [Earliest deadline first] Consider jobs in ascending
order of deadline dj.

– [Smallest slack] Consider jobs in ascending order of
slack dj - tj.

• Greedy template. Consider jobs in some order.

– [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

minimizing lateness: greedy algorithms

counterexample

dj

tj

100

1

1

10

10

2

1/25/2014

5

• Greedy template. Consider jobs in some order.

– [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

– [Smallest slack] Consider jobs in ascending order of
slack dj - tj.

minimizing lateness: greedy algorithms

counterexample

dj

tj

100

1

1

10

10

2

counterexample dj

tj

2

1

1

10

10

2

earliest deadline

• Order requests in increasing order of deadlines

• Schedule the request with the earliest deadline as

soon as the resource becomes available

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort deadlines in increasing order (d1  d2  …  dn)

f  s

for i1 to n to

 si f

 fi  si+ti

 ffi

end for

minimizing lateness: greedy algorithm

• Greedy algorithm. Earliest deadline first.

proof for greedy algorithm: exchange argument

We will show that if there is another schedule O

(think optimal schedule) then we can gradually

change O so that

– at each step the maximum lateness in O never gets

worse

– it eventually becomes the same cost as A

1/25/2014

6

minimizing lateness: no idle time

• Observation. There exists an optimal schedule with no idle
time.

• Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

minimizing lateness: inversions

• Definition. An inversion in schedule S is a pair of jobs i and
j such that di < dj but j scheduled before i.

• Observation. Greedy schedule has no inversions.

• Observation. If a schedule (with no idle time) has an
inversion, it has one with a pair of inverted jobs scheduled
consecutively (by transitivity of <).

i j before swap

inversion

minimizing lateness: inversions

• Definition. An inversion in schedule S is a pair of jobs i and

j such that di < dj but j scheduled before i.

• Claim. Swapping two adjacent, inverted jobs reduces the

number of inversions by one and does not increase the

max lateness.

i j

i j

before swap

after swap

f'j

fi
inversion

minimizing lateness: inversions

If dj  di but j is scheduled in O immediately before i

then swapping requests i and j to get schedule O’

does not increase the maximum lateness

– Lateness Li’ Li since i is scheduled earlier in O’ than in O

– Requests i and j together occupy the same total time

slot in both schedules

All other requests ki,j have Lk’=Lk

fj’=fi so Lj’= f’j-dj =fi-dj fi-di=Li

– Maximum lateness has not increased!

1/25/2014

7

optimal schedules and inversions

• Claim: There is an optimal schedule with no

idle time and no inversions

• Proof:

– By previous argument there is an optimal

schedule O with no idle time

– If O has an inversion then it has a consecutive

pair of requests in its schedule that are inverted

and can be swapped without increasing

lateness

optimal schedules and inversions

• Eventually these swaps will produce an

optimal schedule with no inversions

– Each swap decreases the number of inversions

by 1

– There are a bounded number of (at most n(n-

1)/2) inversions (we only care that this is finite.)

QED

idleness and inversions are the only issue

• Claim: All schedules with no inversions and no idle time
have the same maximum lateness.

• Proof

– Schedules can differ only in how they order requests with equal
deadlines

– Consider all requests having some common deadline d

– Maximum lateness of these jobs is based only on the finish time of
the last of these jobs but the set of these requests occupies the
same time segment in both schedules

Last of these requests finishes at the same time in any such
schedule.

earliest deadline first is optimal

• We know that

– There is an optimal schedule with no idle time
or inversions

– All schedules with no idle time or inversions
have the same maximum lateness

– EDF produces a schedule with no idle time or
inversions

• Therefore

– EDF produces an optimal schedule

