
1/25/2014 

1 

CSE 421: Algorithms 

Winter 2014 

Lecture 8: Greedy algorithms II 

 

Reading:  Sections 4.1-4.5 

Don’t Forget: 

Industry Affiliates Recruiting Fairs  
are next Tuesday (1/28) and Wednesday (1/29)! 

 

Please pick up your name badge & lanyard in 

advance. 
Where: Main Office 

When: Friday or Monday, 10:30-11:30 am or 1:30-3 pm 

        or Tuesday morning, 10:30-11:30 am. 
 

Over 60 companies will be represented, including:  

 

interval partitioning 

• Interval partitioning. 

– Lecture j starts at sj and finishes at fj. 

– Goal:  find minimum number of classrooms to schedule all 

     lectures so that no two occur at the same time in the same room. 

 

• Example:  This schedule uses 4 classrooms to schedule 10 lectures. 
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interval partitioning 
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• Interval partitioning. 

– Lecture j starts at sj and finishes at fj. 

– Goal:  find minimum number of classrooms to schedule all 

     lectures so that no two occur at the same time in the same room. 

 

• Example:  This schedule uses only 3 classrooms. 



1/25/2014 

2 

lower bound on optimal solutions 

• Definition.  The depth of a set of open intervals is the maximum number that 
contain any given time. 

 

• Key observation.  Number of classrooms needed    depth. 
 

• Ex:  Depth of schedule below = 3    schedule below is optimal. 

 

 

 

 

 

 

 

 

 

 

 

• Q.  Does there always exist a schedule equal to depth of intervals? 
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a, b, c all contain 9:30 

a simple greedy algorithm 

Sort requests in increasing order of start times 

 (s1,f1),…,(sn,fn) 

   

For i=1 to n 

 j1 

    While (request i not scheduled) 

  lastj finish time of the last request  

                         currently scheduled on resource j 

  if silastj then schedule request i on resource j 

  jj+1 

    End While 

End For 

 

 

interval partitioning:  greedy analysis 

• Observation.  Greedy algorithm never schedules two 
incompatible lectures in the same classroom. 

interval partitioning:  greedy analysis 

• Observation.  Greedy algorithm never schedules two 
incompatible lectures in the same classroom. 

 

• Theorem.  Greedy algorithm is optimal. 

• Proof.   

– Let d = number of classrooms that the greedy algorithm 
allocates. 

– Classroom d is opened because we needed to schedule a job, 
say j, that is incompatible with all d-1 other classrooms. 

– Since we sorted by start time, all these incompatibilities are 
caused by lectures that start no later than sj. 

– Thus, we have d lectures overlapping at time sj + . 

– Key observation    all schedules use  d classrooms.  ▪ 
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a simple greedy algorithm 

Sort requests in increasing order of start times 

 (s1,f1),…,(sn,fn) 

   

For i=1 to n 

 j1 

    While (request i not scheduled) 

  lastj finish time of the last request  

                         currently scheduled on resource j 

  if silastj then schedule request i on resource j 

  jj+1 

    End While 

End For 

 

 

O(n log n) time 

May be slow: O(nd)  

which could be Ω(n2) 

a simple greedy algorithm 

Sort requests in increasing order of start times 

 (s1,f1),…,(sn,fn) 

   

For i=1 to n 

 j1 

    While (request i not scheduled) 

  lastj finish time of the last request  

                         currently scheduled on resource j 

  if silastj then schedule request i on resource j 

  jj+1 

    End While 

End For 

 

 

O(n log n) time 

a more efficient implementation 

Sort requests in increasing order of start times (s1,f1),…,(sn,fn) 

   

d  1 

Schedule request 1 on resource 1 

last1f1 

Insert 1 into priority queue Q with key = last1 

For i=2 to n 

      j findmin(Q) 

  if silastj then  

             schedule request i on resource j 

             lastj  fi 

        Increasekey(j,Q) to lastj  

     else 

             d  d+1 

             schedule request i on resource d 

             lastdfi 

             Insert d into priority queue Q with key = lastd 

End For 

 

 

O(n log n) time 

O(n log d) 

O(n log n) 

greedy analysis strategies 

• Greedy algorithm stays ahead.  Show that after each step 
of the greedy algorithm, its solution is at least as good as 
any other algorithm's.  

 

• Exchange argument.  Gradually transform any solution to 
the one found by the greedy algorithm without hurting its 
quality. 

 

• Structural.  Discover a simple "structural" bound asserting 
that every possible solution must have a certain value. 
Then show that your algorithm always achieves this bound. 
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scheduling to minimize lateness 

Scheduling to minimize lateness 
– Single resource as in interval scheduling but instead of start and 

finish times request i has 

Time requirement ti which must be scheduled in a contiguous block 
Target deadline di by which time the request would like to be 
finished 
Overall start time s 

– Requests are scheduled by the algorithm into time intervals [si,fi] 
such that ti=fi-si 

– Lateness of schedule for request i is 

If di  fi then request i is late by Li= fi-di otherwise its lateness Li= 0 
– Maximum lateness L=maxi Li  

– Goal: Find a schedule for all requests (values of si and fi for each 
request i) to minimize the maximum lateness, L 

scheduling to minimize lateness 

 

 

Example: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

lateness = 0 lateness = 2 

dj 6 

tj 3 
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max lateness = 6 

minimizing lateness:  greedy algorithms 

• Greedy template.  Consider jobs in some order.  

 

– [Shortest processing time first]  Consider jobs in 
ascending order of processing time tj. 

 

 

– [Earliest deadline first]  Consider jobs in ascending 
order of deadline dj. 

 

 

– [Smallest slack]  Consider jobs in ascending order of 
slack dj - tj. 

 

 

• Greedy template.  Consider jobs in some order.  
 

– [Shortest processing time first]  Consider jobs in 
ascending order of processing time tj. 

 
 

 

 

 

 

 

 

minimizing lateness:  greedy algorithms 

counterexample 
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• Greedy template.  Consider jobs in some order.  
 

– [Shortest processing time first]  Consider jobs in 
ascending order of processing time tj. 

 
 

 

 

 

 

 

 

– [Smallest slack]  Consider jobs in ascending order of 
slack dj - tj. 

minimizing lateness:  greedy algorithms 

counterexample 
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counterexample dj 
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earliest deadline 

• Order requests in increasing order of deadlines 

 

• Schedule the request with the earliest deadline as 

soon as the resource becomes available 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

max lateness = 1 

Sort deadlines in increasing order  (d1  d2  …  dn) 

f  s 

for i1 to n to 

 si f 

 fi  si+ti 

 ffi 

end for 

minimizing lateness:  greedy algorithm 

• Greedy algorithm.  Earliest deadline first. 

proof for greedy algorithm: exchange argument 

We will show that if there is another schedule O 

(think optimal schedule) then we can gradually 

change O so that  

– at each step the maximum lateness in O never gets 

worse 

– it eventually becomes the same cost as A 
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minimizing lateness: no idle time 

• Observation.  There exists an optimal schedule with no idle 
time. 

 

 

 

 

 

 

 

 

• Observation. The greedy schedule has no idle time. 

 

 

0 1 2 3 4 5 6 

d = 4 d = 6 

7 8 9 10 11 

d = 12 

0 1 2 3 4 5 6 

d = 4 d = 6 

7 8 9 10 11 

d = 12 

minimizing lateness: inversions 

• Definition.  An inversion in schedule S is a pair of jobs i and 
j such that di < dj but j scheduled before i. 

 

 

 

 

 

• Observation.  Greedy schedule has no inversions. 

 

• Observation.  If a schedule (with no idle time) has an 
inversion, it has one with a pair of inverted jobs scheduled 
consecutively (by transitivity of <). 

 

i j before swap 

inversion 

minimizing lateness: inversions 

• Definition.  An inversion in schedule S is a pair of jobs i and 

j such that  di < dj but j scheduled before i. 

 

 

 

 

• Claim.  Swapping two adjacent, inverted jobs reduces the 

number of inversions by one and does not increase the 

max lateness. 

 

i j 

i j 

before swap 

after swap 

f'j 

fi 
inversion 

minimizing lateness: inversions 

If dj  di but j is scheduled in O immediately before i 

then swapping requests i and j to get schedule O’ 

does not increase the maximum lateness 

– Lateness Li’ Li since i is scheduled earlier in O’ than in O 

– Requests i and j together occupy the same total time 

slot in both schedules 

All other requests ki,j have Lk’=Lk 

fj’=fi so Lj’= f’j-dj =fi-dj fi-di=Li 

– Maximum lateness has not increased! 
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optimal schedules and inversions 

• Claim: There is an optimal schedule with no 

idle time and no inversions 

• Proof: 

– By previous argument there is an optimal 

schedule O with no idle time 

– If O has an inversion then it has a consecutive 

pair of requests in its schedule that are inverted 

and can be swapped without increasing 

lateness 

optimal schedules and inversions 

• Eventually these swaps will produce an 

optimal schedule with no inversions 

– Each swap decreases the number of inversions 

by 1 

– There are a bounded number of (at most  n(n-

1)/2) inversions (we only care that this is finite.) 

 

QED 

idleness and inversions are the only issue 

• Claim: All schedules with no inversions and no idle time 
have the same maximum lateness. 

• Proof 

– Schedules can differ only in how they order requests with equal 
deadlines 

– Consider all requests having some common deadline d 

 

– Maximum lateness of these jobs is based only on the finish time of 
the last of these jobs but the set of these requests occupies the 
same time segment in both schedules 

Last of these requests finishes at the same time in any such 
schedule. 

 

earliest deadline first is optimal 

• We know that 

– There is an optimal schedule with no idle time 
or inversions 

– All schedules with no idle time or inversions 
have the same maximum lateness 

– EDF produces a schedule with no idle time or 
inversions 

• Therefore  

– EDF produces an optimal schedule 


