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CSE 421: Algorithms 

Winter 2014 

Lecture 6: Greedy algorithms 

 

Reading:  Sections 4.1-4.4 

directed acyclic graphs 

• A directed graph 𝐺 = (𝑉, 𝐸) is acyclic if it has no 

directed cycles 

 

• Terminology:  A directed acyclic graph is also 

called a DAG 

 

directed acyclic graph topological sort 

• Given: a directed acyclic graph (DAG)  G=(V,E)  

• Output:  numbering of the vertices of G with 
distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices 

 

• Applications 

– nodes represent tasks 

– edges represent precedence between tasks 

– topological sort gives a sequential schedule for 
solving them  
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topological sort 

• Given: a directed acyclic graph (DAG)  G=(V,E)  

• Output:  numbering of the vertices of G with 
distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices 
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topologically sorted DAG 

topological sort 

• Can do using DFS 

 

topological sort 

• Can do using DFS 

 

• Alternative simpler idea: 

– Any vertex of in-degree 0 can be given number 

1 to start 

– Remove it from the graph and then give a 

vertex of in-degree 0 number 2, etc.  
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in-degree 0 vertices 

Lemma:  Every DAG has a vertex of in-degree 0 

topological sort 
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topological sort 
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topological sort 
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topological sort 

1 

3 

2 

topological sort 

1 

4 
3 

2 

topological sort 

1 

4 
3 

5 

2 

topological sort 

1 

4 
3 

5 
6 

2 



1/21/2014 

5 

topological sort 
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topological sort 
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topological sort 
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topological sort 
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topological sort 
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topological sort 
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implementing topological sort 

• Go through all edges, computing array with in-degree for 

each vertex     𝑶(𝒎 + 𝒏) 
 

• Maintain a queue (or stack) of vertices of  in-degree 𝟎 
 

• Remove any vertex in queue and number it 
 

• When a vertex is removed, decrease in-degree of each of 

its neighbors by 1 and add them to the queue if their 

degree drops to 0  
 

Total cost: 

greedy algorithms 

• Hard to define exactly but can give general 

properties 

– Solution is built in small steps 

– Decisions on how to build the solution are made to 

maximize some criterion without looking to the future 

Want the ‘best’ current partial solution as if the current 
step were the last step 

• May be more than one greedy algorithm using 

different criteria to solve a given problem 

 

interval scheduling 

Interval scheduling: 

– Job j starts at sj and finishes at fj>sj. 

– Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si 

– Goal: find maximum size subset of mutually compatible jobs. 
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greedy algorithms 

Greedy algorithms 

– Easy to produce 

– Fast running times 

– Work only on certain classes of problems 

Hard part is showing that they are correct 
 

Two methods for proving that greedy algorithms work 

– Greedy algorithm stays ahead 

At each step any other algorithm will have a worse value 
for some criterion that eventually implies optimality 

– Exchange Argument 

Can transform any other solution to the greedy solution 
at no loss in quality 
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interval scheduling 

Single resource 

 

 

 

 

Reservation requests 

Of form “Can I reserve it from start time s to finish time f?” 

s  f 

interval scheduling 

Interval scheduling: 

– Job j starts at sj and finishes at fj>sj. 

– Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si 

– Goal: find maximum size subset of mutually compatible jobs. 
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interval scheduling 

Interval scheduling: 

– Job j starts at sj and finishes at fj>sj. 

– Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si 

– Goal: find maximum size subset of mutually compatible jobs. 
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greedy algorithms for interval scheduling 

• What criterion should we try? 

 

– Earliest start time si 

 

 

– Shortest request time fi-si 

 

 

– Earliest finish fime fi 
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greedy algorithms for interval scheduling 

• What criterion should we try? 
– Earliest start time si 

Doesn’t work 
 

greedy algorithms for interval scheduling 

• What criterion should we try? 
– Earliest start time si 

Doesn’t work 
 

– Shortest request time fi-si 

Doesn’t work 
 

greedy algorithms for interval scheduling 

• What criterion should we try? 
– Earliest start time si 

Doesn’t work 
 

– Shortest request time fi-si 

Doesn’t work 
 

– Fewest conflicts doesn’t work 

 

 

greedy algorithms for interval scheduling 

• What criterion should we try? 
– Earliest start time si 

Doesn’t work 
 

– Shortest request time fi-si 

Doesn’t work 
 

– Fewest conflicts doesn’t work 

 

 

– Earliest finish fime fi 

Works 
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greedy algorithm for interval scheduling 

𝑹  set of all requests 

𝑨   

While 𝑹 do 

  Choose request 𝒊𝑹 with smallest   
 finishing time 𝒇𝒊 

  Add request 𝒊 to 𝑨 

  Delete all requests in 𝑹 that are not  
 compatible with request 𝒊 

Return 𝑨 

greedy algorithm for interval scheduling 

Claim: A is a compatible set of requests and these 

are added to A in order of finish time 

– When we add a request to A we delete all incompatible 

ones from R 

greedy algorithm for interval scheduling 

Claim:  For any other set 𝑶  𝑹 of compatible 

requests, if we order requests in A and O by finish 

time then for each k: 

– If O contains a kth request then so does A and 

– the finish time of the kth request in A, is  the finish 

time of the kth request in O,   i.e. “ak  ok” where ak and 

ok are the respective finish times 

Enough to prove that A is optimal 

inductive proof of claim: 𝑎𝑘 
 𝑜𝑘 

• Base Case: This is true for the first request in A since that 
is the one with the smallest finish time 

 

• Inductive Step: Suppose akok 

– By definition of compatibility 

If O contains a k+1st request r then the start time of that request 
must be after ok and thus after ak 

Thus r is compatible with the first k requests in A 

Therefore  
A has at least k+1 requests since a compatible one is available after the 
first k are chosen 

r was among those considered by the greedy algorithm for that k+1st 
request in A 

Therefore by the greedy choice the finish time of r which is ok+1  is at 
least the finish time of that k+1st request in A which is ak+1 
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interval scheduling:  analysis 

Therefore we have: 

 

• Theorem.  Greedy algorithm is optimal. 

 
• Alternative Proof.  (by contradiction) 

– Assume greedy is not optimal, and let's see what happens. 

– Let a1, a2, ... ak denote set of jobs selected by greedy. 

– Let o1, o2, ... om  denote set of jobs in an optimal solution with 
a1 = o1, a2 = o2, ..., ak = ok for the largest possible value of k.  

o1 o2 ok 

a1 a1 ak ak+1 

. . . 

Greedy: 

OPT: ok+1 

why not replace job ok+1 
with job ak+1? 

job ak+1 finishes before ok+1 

 

 

 

 

 

 

 

 

 

 

Sort jobs by finish times so that 0  f1  f2  ...  fn. 

 

A   

last  0 

for j = 1 to n { 

    if (last  sj) 

      A  A  {j} 

      last  fj 
} 

return A   

greedy algorithm implementation 

O(n log n) 

O(n) 

interval partitioning 

• Interval partitioning. 

– Lecture j starts at sj and finishes at fj. 

– Goal:  find minimum number of classrooms to schedule all 

     lectures so that no two occur at the same time in the same room. 

 

• Example:  This schedule uses 4 classrooms to schedule 10 lectures. 

Time 
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interval partitioning 

Time 
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• Interval partitioning. 

– Lecture j starts at sj and finishes at fj. 

– Goal:  find minimum number of classrooms to schedule all 

     lectures so that no two occur at the same time in the same room. 

 

• Example:  This schedule uses only 3 classrooms. 
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lower bound on optimal solutions 

• Definition.  The depth of a set of open intervals is the maximum number that 
contain any given time. 

 

• Key observation.  Number of classrooms needed    depth. 
 

• Ex:  Depth of schedule below = 3    schedule below is optimal. 

 

 

 

 

 

 

 

 

 

 

 

• Q.  Does there always exist a schedule equal to depth of intervals? 
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a, b, c all contain 9:30 

a simple greedy algorithm 

Sort requests in increasing order of start times 

 (s1,f1),…,(sn,fn) 

   

For i=1 to n 

 j1 

    While (request i not scheduled) 

  lastj finish time of the last request  

                         currently scheduled on resource j 

  if silastj then schedule request i on resource j 

  jj+1 

    End While 

End For 

 

 

interval partitioning:  greedy analysis 

• Observation.  Greedy algorithm never schedules two 
incompatible lectures in the same classroom. 

interval partitioning:  greedy analysis 

• Observation.  Greedy algorithm never schedules two 
incompatible lectures in the same classroom. 

 

• Theorem.  Greedy algorithm is optimal. 

• Proof.   

– Let d = number of classrooms that the greedy algorithm 
allocates. 

– Classroom d is opened because we needed to schedule a job, 
say j, that is incompatible with all d-1 other classrooms. 

– Since we sorted by start time, all these incompatibilities are 
caused by lectures that start no later than sj. 

– Thus, we have d lectures overlapping at time sj + . 

– Key observation    all schedules use  d classrooms.  ▪ 
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a simple greedy algorithm 

Sort requests in increasing order of start times 

 (s1,f1),…,(sn,fn) 

   

For i=1 to n 

 j1 

    While (request i not scheduled) 

  lastj finish time of the last request  

                         currently scheduled on resource j 

  if silastj then schedule request i on resource j 

  jj+1 

    End While 

End For 

 

 

O(n log n) time 

May be slow: O(nd)  

which could be Ω(n2) 

a simple greedy algorithm 

Sort requests in increasing order of start times 

 (s1,f1),…,(sn,fn) 

   

For i=1 to n 

 j1 

    While (request i not scheduled) 

  lastj finish time of the last request  

                         currently scheduled on resource j 

  if silastj then schedule request i on resource j 

  jj+1 

    End While 

End For 

 

 

O(n log n) time 

A more efficient implementation 

Sort requests in increasing order of start times (s1,f1),…,(sn,fn) 

   

d  1 

Schedule request 1 on resource 1 

last1f1 

Insert 1 into priority queue Q with key = last1 

For i=2 to n 

      j findmin(Q) 

  if silastj then  

             schedule request i on resource j 

             lastj  fi 

        Increasekey(j,Q) to lastj  

     else 

             d  d+1 

             schedule request i on resource d 

             lastdfi 

             Insert d into priority queue Q with key = lastd 

End For 

 

 

O(n log n) time 

O(n log d) 

O(n log n) 

greedy analysis strategies 

• Greedy algorithm stays ahead.  Show that after each step 
of the greedy algorithm, its solution is at least as good as 
any other algorithm's.  

 

• Exchange argument.  Gradually transform any solution to 
the one found by the greedy algorithm without hurting its 
quality. 

 

• Structural.  Discover a simple "structural" bound asserting 
that every possible solution must have a certain value. 
Then show that your algorithm always achieves this bound. 

 

 


