
1/21/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 6: Greedy algorithms

Reading: Sections 4.1-4.4

directed acyclic graphs

• A directed graph 𝐺 = (𝑉, 𝐸) is acyclic if it has no

directed cycles

• Terminology: A directed acyclic graph is also

called a DAG

directed acyclic graph topological sort

• Given: a directed acyclic graph (DAG) G=(V,E)

• Output: numbering of the vertices of G with
distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

• Applications

– nodes represent tasks

– edges represent precedence between tasks

– topological sort gives a sequential schedule for
solving them

1/21/2014

2

topological sort

• Given: a directed acyclic graph (DAG) G=(V,E)

• Output: numbering of the vertices of G with
distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

1

4
3

12

10

8

9

11

13

14

5
6

7

2

topologically sorted DAG

topological sort

• Can do using DFS

topological sort

• Can do using DFS

• Alternative simpler idea:

– Any vertex of in-degree 0 can be given number

1 to start

– Remove it from the graph and then give a

vertex of in-degree 0 number 2, etc.

1/21/2014

3

in-degree 0 vertices

Lemma: Every DAG has a vertex of in-degree 0

topological sort

1

topological sort

1 2

topological sort

1/21/2014

4

topological sort

1

3

2

topological sort

1

4
3

2

topological sort

1

4
3

5

2

topological sort

1

4
3

5
6

2

1/21/2014

5

topological sort

1

4
3

5
6

7

2

topological sort

1

4
3

8

5
6

7

2

topological sort

1

4
3

8

9

5
6

7

2

topological sort

1

4
3

10

8

9

5
6

7

2

1/21/2014

6

topological sort

1

4
3

10

8

9

11

5
6

7

2

topological sort

1

4
3

12

10

8

9

11

5
6

7

2

topological sort

1

4
3

12

10

8

9

11

13

5
6

7

2

topological sort

1

4
3

12

10

8

9

11

13

14

5
6

7

2

1/21/2014

7

implementing topological sort

• Go through all edges, computing array with in-degree for

each vertex 𝑶(𝒎 + 𝒏)

• Maintain a queue (or stack) of vertices of in-degree 𝟎

• Remove any vertex in queue and number it

• When a vertex is removed, decrease in-degree of each of

its neighbors by 1 and add them to the queue if their

degree drops to 0

Total cost:

greedy algorithms

• Hard to define exactly but can give general

properties

– Solution is built in small steps

– Decisions on how to build the solution are made to

maximize some criterion without looking to the future

Want the ‘best’ current partial solution as if the current
step were the last step

• May be more than one greedy algorithm using

different criteria to solve a given problem

interval scheduling

Interval scheduling:

– Job j starts at sj and finishes at fj>sj.

– Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si

– Goal: find maximum size subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

greedy algorithms

Greedy algorithms

– Easy to produce

– Fast running times

– Work only on certain classes of problems

Hard part is showing that they are correct

Two methods for proving that greedy algorithms work

– Greedy algorithm stays ahead

At each step any other algorithm will have a worse value
for some criterion that eventually implies optimality

– Exchange Argument

Can transform any other solution to the greedy solution
at no loss in quality

1/21/2014

8

interval scheduling

Single resource

Reservation requests

Of form “Can I reserve it from start time s to finish time f?”

s  f

interval scheduling

Interval scheduling:

– Job j starts at sj and finishes at fj>sj.

– Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si

– Goal: find maximum size subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

interval scheduling

Interval scheduling:

– Job j starts at sj and finishes at fj>sj.

– Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si

– Goal: find maximum size subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

greedy algorithms for interval scheduling

• What criterion should we try?

– Earliest start time si

– Shortest request time fi-si

– Earliest finish fime fi

1/21/2014

9

greedy algorithms for interval scheduling

• What criterion should we try?
– Earliest start time si

Doesn’t work

greedy algorithms for interval scheduling

• What criterion should we try?
– Earliest start time si

Doesn’t work

– Shortest request time fi-si

Doesn’t work

greedy algorithms for interval scheduling

• What criterion should we try?
– Earliest start time si

Doesn’t work

– Shortest request time fi-si

Doesn’t work

– Fewest conflicts doesn’t work

greedy algorithms for interval scheduling

• What criterion should we try?
– Earliest start time si

Doesn’t work

– Shortest request time fi-si

Doesn’t work

– Fewest conflicts doesn’t work

– Earliest finish fime fi

Works

1/21/2014

10

greedy algorithm for interval scheduling

𝑹  set of all requests

𝑨  

While 𝑹 do

 Choose request 𝒊𝑹 with smallest
 finishing time 𝒇𝒊

 Add request 𝒊 to 𝑨

 Delete all requests in 𝑹 that are not
 compatible with request 𝒊

Return 𝑨

greedy algorithm for interval scheduling

Claim: A is a compatible set of requests and these

are added to A in order of finish time

– When we add a request to A we delete all incompatible

ones from R

greedy algorithm for interval scheduling

Claim: For any other set 𝑶  𝑹 of compatible

requests, if we order requests in A and O by finish

time then for each k:

– If O contains a kth request then so does A and

– the finish time of the kth request in A, is  the finish

time of the kth request in O, i.e. “ak  ok” where ak and

ok are the respective finish times

Enough to prove that A is optimal

inductive proof of claim: 𝑎𝑘
 𝑜𝑘

• Base Case: This is true for the first request in A since that
is the one with the smallest finish time

• Inductive Step: Suppose akok

– By definition of compatibility

If O contains a k+1st request r then the start time of that request
must be after ok and thus after ak

Thus r is compatible with the first k requests in A

Therefore
A has at least k+1 requests since a compatible one is available after the
first k are chosen

r was among those considered by the greedy algorithm for that k+1st
request in A

Therefore by the greedy choice the finish time of r which is ok+1 is at
least the finish time of that k+1st request in A which is ak+1

1/21/2014

11

interval scheduling: analysis

Therefore we have:

• Theorem. Greedy algorithm is optimal.

• Alternative Proof. (by contradiction)

– Assume greedy is not optimal, and let's see what happens.

– Let a1, a2, ... ak denote set of jobs selected by greedy.

– Let o1, o2, ... om denote set of jobs in an optimal solution with
a1 = o1, a2 = o2, ..., ak = ok for the largest possible value of k.

o1 o2 ok

a1 a1 ak ak+1

. . .

Greedy:

OPT: ok+1

why not replace job ok+1
with job ak+1?

job ak+1 finishes before ok+1

Sort jobs by finish times so that 0  f1  f2  ...  fn.

A  

last  0

for j = 1 to n {

 if (last  sj)

 A  A  {j}

 last  fj
}

return A

greedy algorithm implementation

O(n log n)

O(n)

interval partitioning

• Interval partitioning.

– Lecture j starts at sj and finishes at fj.

– Goal: find minimum number of classrooms to schedule all

 lectures so that no two occur at the same time in the same room.

• Example: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

interval partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

• Interval partitioning.

– Lecture j starts at sj and finishes at fj.

– Goal: find minimum number of classrooms to schedule all

 lectures so that no two occur at the same time in the same room.

• Example: This schedule uses only 3 classrooms.

1/21/2014

12

lower bound on optimal solutions

• Definition. The depth of a set of open intervals is the maximum number that
contain any given time.

• Key observation. Number of classrooms needed  depth.

• Ex: Depth of schedule below = 3  schedule below is optimal.

• Q. Does there always exist a schedule equal to depth of intervals?

Time

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

a simple greedy algorithm

Sort requests in increasing order of start times

 (s1,f1),…,(sn,fn)

For i=1 to n

 j1

 While (request i not scheduled)

 lastj finish time of the last request

 currently scheduled on resource j

 if silastj then schedule request i on resource j

 jj+1

 End While

End For

interval partitioning: greedy analysis

• Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom.

interval partitioning: greedy analysis

• Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom.

• Theorem. Greedy algorithm is optimal.

• Proof.

– Let d = number of classrooms that the greedy algorithm
allocates.

– Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 other classrooms.

– Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than sj.

– Thus, we have d lectures overlapping at time sj + .

– Key observation  all schedules use  d classrooms. ▪

1/21/2014

13

a simple greedy algorithm

Sort requests in increasing order of start times

 (s1,f1),…,(sn,fn)

For i=1 to n

 j1

 While (request i not scheduled)

 lastj finish time of the last request

 currently scheduled on resource j

 if silastj then schedule request i on resource j

 jj+1

 End While

End For

O(n log n) time

May be slow: O(nd)

which could be Ω(n2)

a simple greedy algorithm

Sort requests in increasing order of start times

 (s1,f1),…,(sn,fn)

For i=1 to n

 j1

 While (request i not scheduled)

 lastj finish time of the last request

 currently scheduled on resource j

 if silastj then schedule request i on resource j

 jj+1

 End While

End For

O(n log n) time

A more efficient implementation

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

d  1

Schedule request 1 on resource 1

last1f1

Insert 1 into priority queue Q with key = last1

For i=2 to n

 j findmin(Q)

 if silastj then

 schedule request i on resource j

 lastj  fi

 Increasekey(j,Q) to lastj

 else

 d  d+1

 schedule request i on resource d

 lastdfi

 Insert d into priority queue Q with key = lastd

End For

O(n log n) time

O(n log d)

O(n log n)

greedy analysis strategies

• Greedy algorithm stays ahead. Show that after each step
of the greedy algorithm, its solution is at least as good as
any other algorithm's.

• Exchange argument. Gradually transform any solution to
the one found by the greedy algorithm without hurting its
quality.

• Structural. Discover a simple "structural" bound asserting
that every possible solution must have a certain value.
Then show that your algorithm always achieves this bound.

