Winter 2014

Lecture 6: Greedy algorithms
Reading: Sections 4.1-4.4

directed acyclic graph

directed acyclic graphs

- A directed graph $G=(V, E)$ is acyclic if it has no directed cycles
- Terminology: A directed acyclic graph is also called a DAG

topological sort

- Given: a directed acyclic graph (DAG) $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Output: numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices
- Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them
topological sort
- Given: a directed acyclic graph (DAG) $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Output: numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices

topological sort
- Can do using DFS
topologically sorted DAG

topological sort
- Can do using DFS
- Alternative simpler idea:
- Any vertex of in-degree 0 can be given number 1 to start
- Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.

Lemma: Every DAG has a vertex of in-degree 0

topological sort

topological sort

topological sort

topological sort

topological sort

topological sort

topological sort

topological sort

implementing topological sort

- Go through all edges, computing array with in-degree for each vertex $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0

Total cost:

interval scheduling

Interval scheduling:

- Job j starts at s_{j} and finishes at $\mathrm{f}_{\mathrm{j}}>\mathrm{s}_{\mathrm{j}}$.
- Two jobs i and j compatible if they don't overlap: $f_{1} \leq s_{1}$ or $f_{j} \leq s_{1}$
- Goal: find maximum size subset of mutually compatible jobs.

greedy algorithms

- Hard to define exactly but can give general properties
- Solution is built in small steps
- Decisions on how to build the solution are made to maximize some criterion without looking to the future Want the 'best' current partial solution as if the current step were the last step
- May be more than one greedy algorithm using different criteria to solve a given problem

greedy algorithms

Greedy algorithms

- Easy to produce
- Fast running times
- Work only on certain classes of problems Hard part is showing that they are correct

Two methods for proving that greedy algorithms work

- Greedy algorithm stays ahead

At each step any other algorithm will have a worse value for some criterion that eventually implies optimality

- Exchange Argument

Can transform any other solution to the greedy solution at no loss in quality

interval scheduling

Single resource
\qquad

Reservation requests
Of form "Can I reserve it from start time s to finish time f?" s<f

interval scheduling

Interval scheduling:

- Job j starts at s_{j} and finishes at $\mathrm{f}_{\mathrm{j}}>\mathrm{s}_{\mathrm{j}}$.
- Two jobs i and j compatible if they don't overlap: $f_{i} \leq s_{j}$ or $f_{j} \leq s_{1}$
- Goal: find maximum size subset of mutually compatible jobs.

interval scheduling

Interval scheduling:

- Job ${ }^{j}$ starts at \mathbf{s}_{j} and finishes at $\mathrm{f}_{\mathrm{j}}>\mathrm{s}_{\mathrm{j}}$.
- Two jobs i and j compatible if they don't overlap: $f_{1} \leq s_{j}$ or $f_{j} \leq s_{1}$
- Goal: find maximum size subset of mutually compatible jobs.

greedy algorithms for interval scheduling
- What criterion should we try?
- Earliest start time $\mathbf{s}_{\mathbf{i}}$
- Shortest request time $f_{i}-s_{i}$
- Earliest finish fime $\mathbf{f}_{\boldsymbol{i}}$
greedy algorithms for interval scheduling
- What criterion should we try?
- Earliest start time $\mathbf{s}_{\mathbf{i}}$

Doesn't work \qquad
\qquad
greedy algorithms for interval scheduling

- What criterion should we try?
- Earliest start time si

Doesn't work

- Shortest request time $f_{i}-s_{i}$ Doesn't work
\qquad —
\qquad
greedy algorithms for interval scheduling
- What criterion should we try?
- Earliest start time \mathbf{s}_{i}

Doesn't work

- Shortest request time $f_{i}-\mathbf{s}_{\mathbf{I}}$ Doesn't work
- Fewest conflicts doesn't work

greedy algorithms for interval scheduling
- What criterion should we try?
- Earliest start time $\mathbf{s}_{\mathbf{i}}$

Doesn't work

- Shortest request time $f_{\mathrm{f}} \mathrm{s}_{\mathrm{l}}$ Doesn't work
- Fewest conflicts doesn't work
- Earliest finish fime f_{i}

Works

greedy algorithm for interval scheduling

$R \leftarrow$ set of all requests

$A \leftarrow \varnothing$
While $R \neq \varnothing$ do
Choose request $i \in R$ with smallest
finishing time f_{i}
Add request i to A
Delete all requests in R that are not compatible with request i
Return A

greedy algorithm for interval scheduling

Claim: For any other set $O \subseteq R$ of compatible requests, if we order requests in A and O by finish
time then for each k :
Enough to prove that A is optimal

- If 0 contains a $k^{\text {th }}$ request then so does A and
- the finish time of the $k^{\text {th }}$ request in A, is \leq the finish time of the $\mathrm{k}^{\text {th }}$ request in 0 , i.e. " $\mathrm{a}_{\mathrm{k}} \leq \mathrm{o}_{\mathrm{k}}$ " where a_{k} and \mathbf{o}_{k} are the respective finish times

greedy algorithm for interval scheduling

Claim: \mathbf{A} is a compatible set of requests and these are added to \mathbf{A} in order of finish time

- When we add a request to A we delete all incompatible ones from \mathbf{R}

inductive proof of claim: $a_{k} \leq o_{k}$

- Base Case: This is true for the first request in A since that is the one with the smallest finish time
- Inductive Step: Suppose $\mathbf{a}_{\mathbf{k}} \leq \mathbf{o}_{\mathbf{k}}$
- By definition of compatibility

If \mathbf{O} contains $a \mathbf{k}+\mathbf{1}^{\text {st }}$ request r then the start time of that request must be after \mathbf{o}_{k} and thus after a_{k}
Thus r is compatible with the first \mathbf{k} requests in \mathbf{A}
Therefore
A has at least $k+1$ requests since a compatible one is available after the first k are chosen
r was among those considered by the greedy algorithm for that $\mathbf{k + 1} \mathbf{1}^{\text {st }}$ request in A
Therefore by the greedy choice the finish time of r which is $\mathbf{o}_{\mathrm{k}+1}$ is at least the finish time of that $k+1^{\text {st }}$ request in A which is a_{k+1}

interval scheduling: analysis

Therefore we have:

- Theorem. Greedy algorithm is optimal.
- Alternative Proof. (by contradiction)
- Assume greedy is not optimal, and let's see what happens.
- Let $a_{1}, a_{2}, \ldots a_{k}$ denote set of jobs selected by greedy.
_ Let $0_{1}, 0_{2}, \ldots 0_{m}$ denote set of jobs in an optimal solution with $a_{1}=0_{1}, a_{2}=0_{2}, \ldots, a_{k}=0_{k}$ for the largest possible value of k.

interval partitioning

- Interval partitioning.
- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- Example: This schedule uses $\mathbf{4}$ classrooms to schedule $\mathbf{1 0}$ lectures.

greedy algorithm implementation

```
O(n logn) Sort jobs by finish times so that 0\leqf}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
```

```
A last &
    for j=1 to n l
        if (last < s )
            A}\leftarrowA\cup{j
            last }\leftarrow\mp@subsup{\textrm{f}}{\textrm{j}}{
    |
    return A
```

$O(n)$

interval partitioning

- Interval partitioning.
- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- Example: This schedule uses only $\mathbf{3}$ classrooms.

lower bound on optimal solutions

Definition. The depth of a set of open intervals is the maximum number that contain any given time.

- Key observation. Number of classrooms needed \geq depth.
- Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

interval partitioning: greedy analysis

- Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

a simple greedy algorithm

Sort requests in increasing order of start times

$$
\left(\mathbf{s}_{1}, f_{1}\right), \ldots,\left(\mathbf{s}_{n}, f_{n}\right)
$$

For $\mathrm{i}=1$ to n
$j \leftarrow 1$
While (request i not scheduled)
last \leftarrow finish time of the last request currently scheduled on resource j
if $s_{i} \geq$ last $_{j}$ then schedule request i on resource j
$\mathrm{j} \leftarrow \mathrm{j}+1$
End While
End For

interval partitioning: greedy analysis

- Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.
- Theorem. Greedy algorithm is optimal.
- Proof.
- Let $\mathrm{d}=$ number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j , that is incompatible with all d-1 other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}.
- Thus, we have d lectures overlapping at time $\mathrm{s}_{\mathrm{f}}+\varepsilon$.
- Key observation \Rightarrow all schedules use \geq d classrooms. "

a simple greedy algorithm

Sort requests in increasing order of start times
$\left(\mathbf{s}_{1}, \mathbf{f}_{1}\right), \ldots,\left(\mathbf{s}_{n}, \mathbf{f}_{\mathrm{n}}\right)$
O(n logn) time
For $\mathrm{i}=1$ to n
$\mathrm{j} \leftarrow 1$
While (request i not scheduled)
last $\leftarrow \leftarrow$ finish time of the last request
currently scheduled on resource j
if $s_{i} \geq$ last t_{j} then schedule request i on resource j
$\mathrm{j} \leftarrow \mathrm{j}+1$
End While
End For
May be slow: O(nd)
which could be $\Omega\left(\mathrm{n}^{2}\right)$

a simple greedy algorithm

Sort requests in increasing order of start times

$$
\left(\mathbf{s}_{1}, \mathbf{f}_{1}\right), \ldots,\left(\mathbf{s}_{n}, \mathbf{f}_{\mathrm{n}}\right) \quad \mathrm{O}(\mathrm{n} \log \mathrm{n}) \text { time }
$$

For $\mathrm{i}=1$ to n
$j \leftarrow 1$
While (request i not scheduled)
last \leftarrow finish time of the last request
currently scheduled on resource j
if $\mathbf{s}_{1} \geq$ last ${ }_{j}$ then schedule request i on resource j
$j \leftarrow j+1$
End While
End For

A more efficient implementation

```
Sort requests in increasing order of start times (s
d}\leftarrow
Schedule request 1 on resource 1
last}\mp@subsup{}{1}{}\leftarrow\mp@subsup{f}{1}{
Insert 1 into priority queue Q with key = last 
For i=2 to n
    j}\leftarrow\mathrm{ findmin(Q)
    if \mp@subsup{s}{i}{}\geq\mp@subsup{last}{j}{\prime}}\mathrm{ then
            schedule request i on resource j}}O(n log d
            lastj}\leftarrow\mp@subsup{\textrm{f}}{\textrm{i}}{
            Increasekey(j,Q) to last,
    else
            d}\leftarrowd+
            schedule request i on resource d
            last}\mp@subsup{|}{d}{}\leftarrow\mp@subsup{f}{\textrm{l}}{
            Insert d into priority queue Q with key = last 
End For
```


greedy analysis strategies

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

