
1/17/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 6: Graph traversal and topological sorting

Reading: Sections 3.3-3.6

breadth-first search

• Completely explore the vertices in order of their

distance from 𝑠

• Naturally implemented using a queue

1

2
3

10

6

4

5

9

8

12

7

11

13

depth-first search

• Completely explore the vertices in DFS order (duh)

• Naturally implemented using recursion

1

2
10

9

8

3

4

5

6

7

11

12

13

properties of BFS

• BFS(s) visits x if and only if there is a path in G from s to x.

• Edges followed to undiscovered vertices define a

“breadth first spanning tree" of G

• Layer i in this tree, Li

– those vertices u such that the shortest path in G from
the root s is of length i.

• On undirected graphs

– All non-tree edges join vertices on the same or adjacent
layers

1/17/2014

2

properties of BFS

On undirected graphs:

All non-tree edges join vertices on the same or
adjacent layers.

BFS application: shortest paths

0

1

2

3

4
can label by distances from start

Tree gives shortest

paths from start vertex

connected components

Want to answer questions of the form:

– Given: vertices 𝒖 and 𝒗 in 𝑮

– Is there a path from 𝒖 to 𝒗?

connected components

Want to answer questions of the form:

– Given: vertices 𝒖 and 𝒗 in 𝑮

– Is there a path from 𝒖 to 𝒗?

Idea: create array 𝑨 such that

 𝑨[𝒖] = smallest numbered vertex

 that is connected to 𝒖

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]?

1/17/2014

3

connected components

Want to answer questions of the form:

– Given: vertices 𝒖 and 𝒗 in 𝑮

– Is there a path from 𝒖 to 𝒗?

Idea: create array 𝑨 such that

 𝑨[𝒖] = smallest numbered vertex

 that is connected to 𝒖

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]?

Q: Why

not create

an array

Path[u,v]?

connected components

• initial state: all v unvisited
 for s  1 to n do

 if state(s)  “fully-explored” then
 BFS(s): setting A[u] s for each u found
 (and marking u visited/fully-explored)
 endif
 endfor

• Total cost: 𝑶(𝒏 + 𝒎)

– each vertex is touched once in this outer procedure and
the edges examined in the different BFS runs are
disjoint

– works also with depth first search

DFS(u) – recursive version

Global Initialization: mark all vertices “unvisited”

DFS(u)

 mark u “visited” and add u to R

 for each edge (u,v)

 if (v is “unvisited”)

 DFS(v)

 mark u “fully-explored”

properties of DFS(s)

• Like BFS(s):

– DFS(s) visits x if and only if there is a path in G from s to x

– Edges into undiscovered vertices define a "depth first
spanning tree" of G

• Unlike the BFS tree:

– the DFS spanning tree isn't minimum depth

– its levels don't reflect min distance from the root

– non-tree edges never join vertices on the same or adjacent
levels

• but…

1/17/2014

4

non-tree edges

• All non-tree edges join a vertex and one of its

descendents/ancestors in the DFS tree

• No cross edges.

bipartite graph

Definition:

Theorem:

Graph is bipartite iff does not contain an odd cycle.

bfs vs dfs BFS for bipartite testing

1

2

3

4

1/17/2014

5

DFS(v) for a directed graph

1

2
10

9

8

3

4

5

6

7

11
12

13

DFS(v)

1

2
10

9

8

3

4

5

6

7

11
12

13

tree edges

back edges

forward

edges

  cross edges

NO  cross edges

directed acyclic graphs

• A directed graph 𝐺 = (𝑉, 𝐸) is acyclic if it has no

directed cycles

• Terminology: A directed acyclic graph is also

called a DAG

directed acyclic graph

1/17/2014

6

topological sort

• Given: a directed acyclic graph (DAG) G=(V,E)

• Output: numbering of the vertices of G with
distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

• Applications

– nodes represent tasks

– edges represent precedence between tasks

– topological sort gives a sequential schedule for
solving them

topological sort

• Given: a directed acyclic graph (DAG) G=(V,E)

• Output: numbering of the vertices of G with
distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

directed acyclic graph in-degree 0 vertices

Lemma: Every DAG has a vertex of in-degree 0

1/17/2014

7

topological sort

• Can do using DFS

DFS(v)

1

2
10

9

8

3

4

5

6

7

11
12

13

tree edges

back edges

forward

edges

  cross edges

NO  cross edges

topological sort

• Can do using DFS

• Alternative simpler idea:

– Any vertex of in-degree 0 can be given number

1 to start

– Remove it from the graph and then give a

vertex of in-degree 0 number 2, etc.

topological sort

1/17/2014

8

1

topological sort

1 2

topological sort

31

topological sort

1

3

2

topological sort

1

4
3

2

1/17/2014

9

topological sort

1

4
3

5

2

topological sort

1

4
3

5
6

2

topological sort

1

4
3

5
6

7

2

topological sort

1

4
3

8

5
6

7

2

1/17/2014

10

topological sort

1

4
3

8

9

5
6

7

2

topological sort

1

4
3

10

8

9

5
6

7

2

topological sort

1

4
3

10

8

9

11

5
6

7

2

topological sort

1

4
3

12

10

8

9

11

5
6

7

2

1/17/2014

11

topological sort

1

4
3

12

10

8

9

11

13

5
6

7

2

topological sort

1

4
3

12

10

8

9

11

13

14

5
6

7

2

implementing topological sort

• Go through all edges, computing array with in-degree for

each vertex 𝑶(𝒎 + 𝒏)

• Maintain a queue (or stack) of vertices of in-degree 𝟎

• Remove any vertex in queue and number it

• When a vertex is removed, decrease in-degree of each of

its neighbors by 1 and add them to the queue if their

degree drops to 0

Total cost:

