
1/17/2014 

1 

CSE 421: Algorithms 

Winter 2014 

Lecture 6: Graph traversal and topological sorting 

 

Reading:  Sections 3.3-3.6 

breadth-first search 

• Completely explore the vertices in order of their 

distance from 𝑠 

• Naturally implemented using a queue 
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depth-first search 

• Completely explore the vertices in DFS order (duh) 

• Naturally implemented using recursion 
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properties of BFS 

• BFS(s) visits x if and only if there is a path in G from s to x. 
 

• Edges followed to undiscovered vertices define a 

“breadth first spanning tree" of G 
 

• Layer i in this tree, Li 

– those vertices u such that the shortest path in G from 
the root s is of length i. 

 

• On undirected graphs 

– All non-tree edges join vertices on the same or adjacent 
layers 
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properties of BFS 

On undirected graphs: 

All non-tree edges join vertices on the same or 
adjacent layers. 

 

BFS application: shortest paths 
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can label by distances from start 

Tree gives shortest  

paths from start vertex 

connected components 

Want to answer questions of the form: 

– Given: vertices 𝒖 and 𝒗 in 𝑮  

– Is there a path from 𝒖 to 𝒗? 

connected components 

Want to answer questions of the form: 

– Given: vertices 𝒖 and 𝒗 in 𝑮  

– Is there a path from 𝒖 to 𝒗? 

 

Idea: create array 𝑨 such that                    

  𝑨[𝒖] = smallest numbered vertex                          

             that is connected to 𝒖 

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]? 
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connected components 

Want to answer questions of the form: 

– Given: vertices 𝒖 and 𝒗 in 𝑮  

– Is there a path from 𝒖 to 𝒗? 

 

Idea: create array 𝑨 such that                    

  𝑨[𝒖] = smallest numbered vertex                          

             that is connected to 𝒖 

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]? 

 

 

Q: Why 

not create 

an array 

Path[u,v]? 

connected components 

• initial state:  all v unvisited 
 for s  1 to n do                                                  

  if state(s)  “fully-explored” then                                  
   BFS(s): setting A[u] s for each u found  
    (and marking u visited/fully-explored)          
  endif                                                                               
 endfor 

 

• Total cost: 𝑶(𝒏 + 𝒎) 

– each vertex is touched once in this outer procedure and 
the edges examined in the different BFS runs are 
disjoint  

– works also with depth first search 

DFS(u) – recursive version 

Global Initialization: mark all vertices “unvisited” 

DFS(u) 

 mark u “visited” and add u to R 

 for each edge (u,v) 

  if (v is “unvisited”)  

   DFS(v) 

 mark u “fully-explored” 

properties of DFS(s) 

• Like BFS(s): 

– DFS(s) visits x if and only if there is a path in G from s to x  

– Edges into undiscovered vertices define a "depth first 
spanning tree" of G 

• Unlike the BFS tree:  

– the DFS spanning tree isn't minimum depth 

– its levels don't reflect min distance from the root 

– non-tree edges never join vertices on the same or adjacent 
levels 

• but… 
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non-tree edges 

• All non-tree edges join a vertex and one of its 

descendents/ancestors in the DFS tree 

 

• No cross edges. 

bipartite graph 

Definition: 

Theorem:  

Graph is bipartite iff does not contain an odd cycle. 

bfs vs dfs BFS for bipartite testing 
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DFS(v) for a directed graph 
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DFS(v) 
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tree edges 

back edges 

forward  

edges 

   cross edges     

NO  cross edges 

directed acyclic graphs 

• A directed graph 𝐺 = (𝑉, 𝐸) is acyclic if it has no 

directed cycles 

 

• Terminology:  A directed acyclic graph is also 

called a DAG 

 

directed acyclic graph 
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topological sort 

• Given: a directed acyclic graph (DAG)  G=(V,E)  

• Output:  numbering of the vertices of G with 
distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices 

 

• Applications 

– nodes represent tasks 

– edges represent precedence between tasks 

– topological sort gives a sequential schedule for 
solving them  

topological sort 

• Given: a directed acyclic graph (DAG)  G=(V,E)  

• Output:  numbering of the vertices of G with 
distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices 

directed acyclic graph in-degree 0 vertices 

Lemma:  Every DAG has a vertex of in-degree 0 
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topological sort 

• Can do using DFS 

DFS(v) 
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tree edges 

back edges 

forward  

edges 

   cross edges     

NO  cross edges 

topological sort 

• Can do using DFS 

 

• Alternative simpler idea: 

– Any vertex of in-degree 0 can  be given number 

1 to start 

– Remove it from the graph and then give a 

vertex of in-degree 0 number 2, etc.  

topological sort 
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topological sort 

1 2 

topological sort 

31 

topological sort 
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topological sort 
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topological sort 
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topological sort 

1 

4 
3 

5 
6 

7 

2 

topological sort 
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topological sort 
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topological sort 
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topological sort 
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topological sort 
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implementing topological sort 

• Go through all edges, computing array with in-degree for 

each vertex     𝑶(𝒎 + 𝒏) 
 

• Maintain a queue (or stack) of vertices of  in-degree 𝟎 
 

• Remove any vertex in queue and number it 
 

• When a vertex is removed, decrease in-degree of each of 

its neighbors by 1 and add them to the queue if their 

degree drops to 0  
 

Total cost: 


