CSE 421.: Algorithms

breadth-first search

Winter 2014

Lecture 6: Graph traversal and topological sorting

Reading: Sections 3.3-3.6

depth-first search

* Completely explore the vertices in order of their

distance from s
* Naturally implemented using a queue

©<0O

properties of BFS

* Completely explore the vertices in DFS order (duh)

* Naturally implemented using recursion

@
©<®

* BFS(s) visits x if and only if there is a path in G from s to x.

» Edges followed to undiscovered vertices define a

“breadth first spanning tree" of G

= Layer iin this tree, L;

— those vertices u such that the shortest path in G from

the root s is of length i.

* On undirected graphs

— All non-tree edges join vertices on the same or adjacent

layers

1/17/2014

properties of BFS

BFS application: shortest paths

On undirected graphs:
All non-tree edges join vertices on the same or
adjacent layers.

connected components

Want to answer questions of the form:
— Given: vertices uand v in G
— Is there a path from u to v?

Tree gives shortest
paths from start vertex

can label by distances from start

connected components

Want to answer questions of the form:
— Given: verticesuand v in G
— Is there a path from u to v?

Idea: create array A such that
A[u] = smallest numbered vertex
that is connected to u
— question reduces to whether A[u] = A[v]?

1/17/2014

connected components

1/17/2014

connected components

Want to answer questions of the form:
— Given: verticesuand vin G
— Is there a path from u to v?

Idea: create array A such that
A[u] = smallest numbered vertex

Q: why
not create
an array
Path[u,v]?

that is connected to u

— question reduces to whether A[u] = A[v]?

DFS(u) - recursive version

* initial state: all v unvisited
fors < 1tondo
if state(s) = “fully-explored” then
BFS(s): setting A[u] <—s for each u found
(and marking u visited/fully-explored)
endif
endfor

* Total cost: O(n + m)

— each vertex is touched once in this outer procedure and
the edges examined in the different BFS runs are
disjoint

— works also with depth first search

properties of DFS(s)

Global Initialization: mark all vertices “unvisited”
DFS(u)
mark u “visited” and add u to R
for each edge (u,v)
if (v is “unvisited”)
DFS(v)
mark u “fully-explored”

* Like BFS(s):
— DFS(s) visits x if and only if there is a path in G from s to x
— Edges into undiscovered vertices define a "depth first
spanning tree" of G
* Unlike the BFS tree:
— the DFS spanning tree isn't minimum depth
— its levels don't reflect min distance from the root
— non-tree edges never join vertices on the same or adjacent
levels

* but...

1/17/2014

non-tree edges bipartite graph

+ All non-tree edges join a vertex and one of its Definition:
descendents/ancestors in the DFS tree

* No cross edges.

Theorem:
Graph is bipartite iff does not contain an odd cycle.

bfs vs dfs BFS for bipartite testing

Breadth-First Searc B Depth-First Searc h

DFS(v) for a directed graph

g
N\ &

directed acyclic graphs

» Adirected graph G = (V, E) is acyclic if it has no

directed cycles

* Terminology: A directed acyclic graph is also

called a DAG

DFS(v)
/@)dees
o)
* forward |
edgeS
back edges \ @
|
®

/® @ I <« cross edges I

N - | NO — cross edges |
@

directed acyclic graph

s
A

v

1/17/2014

1/17/2014

topological sort topological sort

* Given: a directed acyclic graph (DAG) G=(V,E) * Given: a directed acyclic graph (DAG) G=(V,E)

* Output: numbering of the vertices of G with * Output: numbering of the vertices of G with
distinct numbers from 1 to n so edges only go distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices from lower number to higher numbered vertices

* Applications == q

— nodes represent tasks
— edges represent precedence between tasks

— topological sort gives a sequential schedule for
solving them

directed acyclic graph in-degree O vertices

Lemma: Every DAG has a vertex of in-degree O

\73&\

Vs

topological sort

* Can do using DFS

topological sort

* Can do using DFS

* Alternative simpler idea:
— Any vertex of in-degree O can be given number
1 to start

— Remove it from the graph and then give a
vertex of in-degree O number 2, etc.

DFS(v)
/@)wjdges
oS
% forward ®| '
edges
back edges \ @
|
®
©/© @ | < cross edges |
N e " | NO — cross edges |

topological sort

g§7§a\o

Gy

1/17/2014

topological sort

FA

A

topological sort

topological sort

% ©\OZ\
/-@Nz? =
\ c{ ;

topological sort

1/17/2014

topological sort topological sort

topological sort topological sort

1/17/2014

topological sort topological sort

topological sort topological sort

10

topological sort

1/17/2014

topological sort

implementing topological sort

* Go through all edges, computing array with in-degree for
each vertex O(m+n)

* Maintain a queue (or stack) of vertices of in-degree 0
* Remove any vertex in queue and number it

* When a vertex is removed, decrease in-degree of each of
its neighbors by 1 and add them to the queue if their

degree drops to O

Total cost:

11

