Winter 2014

Lecture 6: Graph traversal and topological sorting
Reading: Sections 3.3-3.6

depth-first search

- Completely explore the vertices in DFS order (duh)
- Naturally implemented using recursion

- Completely explore the vertices in order of their distance from s
- Naturally implemented using a queue

properties of BFS

- BFS(s) visits x if and only if there is a path in G from s to x .
- Edges followed to undiscovered vertices define a "breadth first spanning tree" of G
- Layer i in this tree, L_{i}
- those vertices u such that the shortest path in G from the root s is of length i.
- On undirected graphs
- All non-tree edges join vertices on the same or adjacent layers

properties of BFS

On undirected graphs:

All non-tree edges join vertices on the same or adjacent layers.

connected components

Want to answer questions of the form:

- Given: vertices u and v in G
- Is there a path from u to v ?

BFS application: shortest paths

Tree gives shortest

connected components

Want to answer questions of the form:

- Given: vertices u and v in G
- Is there a path from u to v ?

Idea: create array A such that
$A[u]=$ smallest numbered vertex
that is connected to u

- question reduces to whether $A[u]=A[v]$?

connected components

Want to answer questions of the form:

- Given: vertices u and v in G
- Is there a path from u to v ?

Idea: create array A such that
$A[u]=$ smallest numbered vertex

Q: Why not create an array Path[u,v]?
that is connected to \boldsymbol{u}

- question reduces to whether $A[u]=A[v] ?$

DFS(u) - recursive version

Global Initialization: mark all vertices "unvisited"

DFS(\mathbf{u})

mark \mathbf{u} "visited" and add \mathbf{u} to \mathbf{R}
for each edge (\mathbf{u}, \mathbf{v})
if (\mathbf{v} is "unvisited")
DFS(v)
mark u "fully-explored"

connected components

- initial state: all v unvisited for $\mathbf{s} \leftarrow \mathbf{1}$ to \mathbf{n} do
if state $(\mathbf{s}) \neq$ "fully-explored" then
BFS(s): setting $A[\mathbf{u}] \leftarrow \mathbf{s}$ for each \mathbf{u} found (and marking u visited/fully-explored) endif
endfor
- Total cost: $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$
- each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
- works also with depth first search

properties of DFS(s)

- Like BFS(s):
- DFS(s) visits x if and only if there is a path in G from s to x
- Edges into undiscovered vertices define a "depth first spanning tree" of G
- Unlike the BFS tree:
- the DFS spanning tree isn't minimum depth
- its levels don't reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels
- but...

non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges.

bfs vs dfs

bipartite graph
Definition:

Theorem:

Graph is bipartite iff does not contain an odd cycle.
\qquad

DFS(v) for a directed graph

directed acyclic graphs

- A directed graph $G=(V, E)$ is acyclic if it has no directed cycles
- Terminology: A directed acyclic graph is also called a DAG

directed acyclic graph

topological sort

- Given: a directed acyclic graph (DAG) $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Output: numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices
- Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

directed acyclic graph

topological sort

- Given: a directed acyclic graph (DAG) $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Output: numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices

in-degree 0 vertices
Lemma: Every DAG has a vertex of in-degree 0
topological sort
- Can do using DFS
topological sort
- Can do using DFS
- Alternative simpler idea:
- Any vertex of in-degree 0 can be given number 1 to start
- Remove it from the graph and then give a vertex of in-degree 0 number 2 , etc.

topological sort

topological sort

topological sort

topological sort

topological sort

topological sort

topological sort

implementing topological sort

- Go through all edges, computing array with in-degree for each vertex $\quad \boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0

Total cost:

