
1/14/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 5: Graphs and graph traversal II

Reading: Sections 3.1-3.2

undirected graphs

Mathematically, a graph is a pair 𝑮 = (𝑽, 𝑬)

of vertices (𝑽) and edges (𝑬). The edges are simply

unordered pairs of vertices, i.e. {𝒖, 𝒗} for 𝒖, 𝒗 ∈ 𝑽.

𝒏 = 𝑽 , 𝒎 = |𝑬|

undirected graphs

Two representations:

 - adjacency list

 - adjacency matrix

Dense graphs vs. sparse graphs

 Θ 𝑛2 edges 𝑂 𝑛 edges

𝒏 = 𝑽 , 𝒎 = |𝑬|

euler tours

Euler: Is it possible to walk over each bridge exactly

once and then return to the starting point?

(Glorious Konigsberg)

1/14/2014

2

eulerian graphs

A graph is Eulerian if there exists a tour that crosses

every edge exactly once.

eulerian graphs

A graph is Eulerian if there exists a tour that crosses

every edge exactly once.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if

it is connected and every vertex has even degree!

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if

it is connected and every vertex has even degree!

Proof.

Easier direction:

Eulerian → connected and all degrees even.

1/14/2014

3

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if

it is connected and every vertex has even degree!

Proof.

Harder direction: connected and all degrees → Eulerian

 Strategy: Find a simple cycle (no vertex repeated) in

the graph. Then remove it and induct.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if

it is connected and every vertex has even degree!

Proof.

Harder direction: connected and all degrees → Eulerian

 Strategy: Find a simple cycle (no vertex repeated) in

the graph. Then remove it and induct.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if

it is connected and every vertex has even degree!

Proof.

Harder direction: connected and all degrees → Eulerian

 Strategy: Find a simple cycle (no vertex repeated) in

the graph. Then remove it and induct.

After cycle removed, degrees still even.

Why can we patch cycles together?

Base case?

one last step...

Prove that every graph with all degrees even contains

a simple cycle (i.e. with no vertices repeated).

1/14/2014

4

euler tours

NO: There are odd degree vertices.

(Glorious Konigsberg)

the profundity of algorithms

find a tour that visits every
edge exactly once

≪ 1 second on 100,000 node graph

(fastest algorithm, 1 op/nanosec)

the profundity of algorithms

find a tour that visits every
edge exactly once

find a tour that visits every
vertex exactly once

≪ 1 second on 100,000 node graph

(fastest algorithm, 1 op/nanosec)
fastest known algorithm on 100

node graph takes ≫ 1,000,000 years

directed graphs

A directed graph (digraph for short) is a pair

𝑮 = (𝑽, 𝑬) of vertices (𝑽) and edges (𝑬). The edges

are now ordered pairs of vertices, i.e. (𝒖, 𝒗) for

𝒖, 𝒗 ∈ 𝑽.
1

2
10

9

8

3

4

5

6

7

11

12

13

1/14/2014

5

directed path

1

2
10

9

8

3

4

5

6

7

11

12

13

A path in a directed graph is a sequence of nodes

𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌 such that 𝒗𝒊, 𝒗𝒊+𝟏 are connected by an edge

for 𝑖 = 1,2, … , 𝑘 − 1.

(e.g. web link structure)

graph traversal

We are interested in algorithmic questions like:

How can we determine if a graph is connected (and do

it fast)?

graph traversal

We are interested in algorithmic questions like:

How can we determine if a graph is connected (and do

it fast)?

Goal of traversal:

– Learn the basic structure of a graph

– Walk from a fixed starting vertex s to find all vertices
reachable from s

Three states of vertices

– unvisited

– visited/discovered

– fully-explored

generic graph traversal algorithm

Find: Set 𝑹 of vertices reachable from 𝒔𝑽

Reachable(𝒔):

𝑹  {𝒔}

While there is an edge (𝒖, 𝒗)𝑬 with 𝒖𝑹 and 𝒗𝑹

 Add 𝒗 to 𝑹

1/14/2014

6

generic traversal always works

Claim:

At termination 𝑹 is the set of nodes reachable from 𝒔

Proof:

: For every node 𝒗𝑹 there is a path from 𝒔 to 𝒗

: Suppose there is a node 𝒘𝑹 reachable from

 𝒔 via a path 𝑷

Take first node 𝒗 on 𝑷 such that 𝒗𝑹

Predecessor 𝒖 of 𝒗 in 𝑷 satisfies

 𝒖 ∈ 𝑹

 (𝒖, 𝒗)𝑬

But this contradicts the fact that the algorithm exited

the while loop.

generic graph traversal algorithm

Find: Set 𝑹 of vertices reachable from 𝒔𝑽

Reachable(𝒔):

𝑹  {𝒔}

While there is an edge (𝒖, 𝒗)𝑬 with 𝒖𝑹 and 𝒗𝑹

 Add 𝒗 to 𝑹

We didn’t specify the order in which to check the edges.

Different orders lead to algorithms with different properties.

Two main examples:

BFS (breadth-first search) and DFS (depth-first search)

breadth-first search

• Completely explore the vertices in order of their

distance from 𝑠

• Naturally implemented using a queue

1

2
3

10

6

4

5

9

8

12

7

11

13

depth-first search

• Completely explore the vertices in DFS order (duh)

• Naturally implemented using recursion

1

2
10

9

8

3

4

5

6

7

11

12

13

1/14/2014

7

BFS

Global initialization: mark all vertices “unvisited”

BFS(s)

mark s “visited”; R{s}; layer L0{s}

while Li not empty

 Li+1  

for each uLi

 for each edge (u,v)

 if (v is “unvisited”)

 mark v “visited”

 Add v to set R and to layer Li+1

 Mark u “fully-explored”

i  i+1

BFS

Global initialization: mark all vertices “unvisited”

BFS(s)

mark s “visited”; R{s}; layer L0{s}

while Li not empty

 Li+1  

for each uLi

 for each edge (u,v)

 if (v is “unvisited”)

 mark v “visited”

 Add v to set R and to layer Li+1

 mark u “fully-explored”

i  i+1

total running time:

𝑂(𝑚 + 𝑛)

properties of BFS

• BFS(s) visits x if and only if there is a path in G from s to x.

• Edges followed to undiscovered vertices define a

“breadth first spanning tree" of G

• Layer i in this tree, Li

– those vertices u such that the shortest path in G from
the root s is of length i.

• On undirected graphs

– All non-tree edges join vertices on the same or adjacent
layers

properties of BFS

On undirected graphs:

All non-tree edges join vertices on the same or
adjacent layers.

1/14/2014

8

BFS application: shortest paths

0

1

2

3

4
can label by distances from start

Tree gives shortest

paths from start vertex

connected components

Want to answer questions of the form:

– Given: vertices 𝒖 and 𝒗 in 𝑮

– Is there a path from 𝒖 to 𝒗?

connected components

Want to answer questions of the form:

– Given: vertices 𝒖 and 𝒗 in 𝑮

– Is there a path from 𝒖 to 𝒗?

Idea: create array 𝑨 such that

 𝑨[𝒖] = smallest numbered vertex

 that is connected to 𝒖

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]?

connected components

Want to answer questions of the form:

– Given: vertices 𝒖 and 𝒗 in 𝑮

– Is there a path from 𝒖 to 𝒗?

Idea: create array 𝑨 such that

 𝑨[𝒖] = smallest numbered vertex

 that is connected to 𝒖

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]?

Q: Why

not create

an array

Path[u,v]?

1/14/2014

9

connected components

• initial state: all v unvisited
 for s  1 to n do

 if state(s)  “fully-explored” then
 BFS(s): setting A[u] s for each u found
 (and marking u visited/fully-explored)
 endif
 endfor

• Total cost: 𝑶(𝒏 + 𝒎)

– each vertex is touched once in this outer procedure and
the edges examined in the different BFS runs are
disjoint

– works also with depth first search

DFS(u) – recursive version

Global Initialization: mark all vertices “unvisited”

DFS(u)

 mark u “visited” and add u to R

 for each edge (u,v)

 if (v is “unvisited”)

 DFS(v)

 mark u “fully-explored”

properties of DFS(s)

• Like BFS(s):

– DFS(s) visits x if and only if there is a path in G from s to x

– Edges into undiscovered vertices define a "depth first
spanning tree" of G

• Unlike the BFS tree:

– the DFS spanning tree isn't minimum depth

– its levels don't reflect min distance from the root

– non-tree edges never join vertices on the same or adjacent
levels

• but…

non-tree edges

• All non-tree edges join a vertex and one of its

descendents/ancestors in the DFS tree

• No cross edges.

1/14/2014

10

bipartite graph

Definition:

Theorem:

Graph is bipartite iff does not contain an odd cycle.

BFS for bipartite testing

1

2

3

4

DFS(v) for a directed graph

1

2
10

9

8

3

4

5

6

7

11
12

13

DFS(v)

1

2
10

9

8

3

4

5

6

7

11
12

13

tree edges

back edges

forward

edges

  cross edges

NO  cross edges

