Winter 2014

Lecture 5: Graphs and graph traversal II
Reading: Sections 3.1-3.2

undirected graphs

undirected graphs

Mathematically, a graph is a pair $G=(V, E)$ of vertices (V) and edges (E). The edges are simply unordered pairs of vertices, i.e. $\{u, v\}$ for $u, v \in V$.

euler tours

Euler: Is it possible to walk over each bridge exactly once and then return to the starting point?

eulerian graphs

A graph is Eulerian if there exists a tour that crosses every edge exactly once.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if it is connected and every vertex has even degree!

eulerian graphs

A graph is Eulerian if there exists a tour that crosses every edge exactly once.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if it is connected and every vertex has even degree!

Proof.
Easier direction:
Eulerian \rightarrow connected and all degrees even.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if it is connected and every vertex has even degree!

Proof.
Harder direction: connected and all degrees \rightarrow Eulerian
Strategy: Find a simple cycle (no vertex repeated) in the graph. Then remove it and induct.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if it is connected and every vertex has even degree!

Proof.
Harder direction: connected and all degrees \rightarrow Eulerian
Strategy: Find a simple cycle (no vertex repeated) in the graph. Then remove it and induct.

After cycle removed, degrees still even.
Why can we patch cycles together?
Base case?

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if
it is connected and every vertex has even degree!
Proof.
Harder direction: connected and all degrees \rightarrow Eulerian Strategy: Find a simple cycle (no vertex repeated) in the graph. Then remove it and induct.

one last step...

Prove that every graph with all degrees even contains a simple cycle (i.e. with no vertices repeated).

find a tour that visits every
edge exactly once
<< 1 second on 100,000 node graph
(fastest algorithm, 1 op/nanosec)
the profundity of algorithms

find a tour that visits every edge exactly once
<< 1 second on 100,000 node graph (fastest algorithm, $1 \mathrm{op} /$ nanosec)

find a tour that visits every vertex exactly once
fastest known algorithm on 100 node graph takes $\gg 1,000,000$ years

directed graphs

A directed graph (digraph for short) is a pair

 $G=(V, E)$ of vertices (V) and edges (E). The edges are now ordered pairs of vertices, i.e. (u, v) for $u, v \in V$.

directed path

A path in a directed graph is a sequence of nodes
$v_{1}, v_{2}, \ldots, v_{k}$ such that (v_{i}, v_{i+1}) are connected by an edge for $i=1,2, \ldots, k-1$.

graph traversal

We are interested in algorithmic questions like: How can we determine if a graph is connected (and do it fast)?
Goal of traversal:
\quad - Learn the basic structure of a graph

- Walk from a fixed starting vertex s to find all vertices
reachable from s
- Learn the basic structure of a graph reachable from s

Three states of vertices

- unvisited

- visited/discovered
- fully-explored

graph traversal

We are interested in algorithmic questions like:
How can we determine if a graph is connected (and do it fast)?

generic graph traversal algorithm

Find: Set R of vertices reachable from $s \in V$

Reachable (s) :

$R \leftarrow\{s\}$
While there is an edge $(u, v) \in E$ with $u \in R$ and $v \notin R$ Add v to R

generic traversal always works

Claim:

At termination R is the set of nodes reachable from s
Proof:
\subseteq : For every node $v \in R$ there is a path from s to v〇: Suppose there is a node $w \notin R$ reachable from s via a path P
Take first node v on P such that $v \notin R$
Predecessor u of v in P satisfies

$$
\begin{aligned}
& u \in R \\
& (u, v) \in E
\end{aligned}
$$

But this contradicts the fact that the algorithm exited the while loop.

breadth-first search

- Completely explore the vertices in order of their distance from s
- Naturally implemented using a queue

generic graph traversal algorithm

Find: Set R of vertices reachable from $s \in V$

Reachable(s):

$$
R \leftarrow\{s\}
$$

While there is an edge $(u, v) \in E$ with $u \in R$ and $v \notin R$
Add v to R

We didn't specify the order in which to check the edges.
Different orders lead to algorithms with different properties.
Two main examples:
BFS (breadth-first search) and DFS (depth-first search)

depth-first search

- Completely explore the vertices in DFS order (duh)
- Naturally implemented using recursion


```
Global initialization: mark all vertices "unvisited"
BFS(s)
    mark s "visited"; \(\mathrm{R} \leftarrow\{\mathrm{s}\}\); layer \(\mathrm{L}_{0} \leftarrow\{\mathrm{~s}\}\)
    while \(\mathrm{L}_{\mathrm{i}}\) not empty
        \(\mathrm{L}_{\mathrm{i}+1} \leftarrow \varnothing\)
        for each \(\mathbf{u} \in \mathrm{L}_{\text {i }}\)
            for each edge ( \(\mathbf{u}, \mathbf{v}\) )
                if ( \(\mathbf{v}\) is "unvisited")
                mark v "visited"
                Add \(\mathbf{v}\) to set \(\mathbf{R}\) and to layer \(\mathbf{L}_{\mathbf{i + 1}}\)
            Mark u "fully-explored"
        \(\mathrm{i} \leftarrow \mathrm{i}+\mathbf{1}\)
```


properties of BFS

- BFS(s) visits \mathbf{x} if and only if there is a path in G from s to \mathbf{x}.
- Edges followed to undiscovered vertices define a "breadth first spanning tree" of G
- Layer i in this tree, L_{i}
- those vertices u such that the shortest path in G from the root s is of length i.
- On undirected graphs
- All non-tree edges join vertices on the same or adjacent layers

```
Global initialization: mark all vertices "unvisited"
BFS(s)
    mark s "visited"; \(\mathrm{R} \leftarrow\{\mathbf{s}\}\); layer \(\mathrm{L}_{0} \leftarrow\{\mathbf{s}\}\)
    while \(L_{1}\) not empty
        \(\mathrm{L}_{\mathrm{i}+1} \leftarrow \varnothing \quad\) total running time:
        for each \(\mathbf{u} \in \mathbf{L}_{\mathbf{i}} \quad O(m+n)\)
            for each edge ( \(\mathbf{u}, \mathbf{v}\) )
                if ( \(\mathbf{v}\) is "unvisited")
                mark v "visited"
                Add \(\mathbf{v}\) to set \(\mathbf{R}\) and to layer \(\mathbf{L}_{\mathrm{i}+1}\)
            mark u "fully-explored"
        \(\mathbf{i} \leftarrow \mathbf{i}+\mathbf{1}\)
```


properties of BFS

On undirected graphs:
All non-tree edges join vertices on the same or adjacent layers.

BFS application: shortest paths

connected components

Want to answer questions of the form:

- Given: vertices u and v in G
- Is there a path from u to v ?

Idea: create array A such that
$A[u]=$ smallest numbered vertex
that is connected to u

- question reduces to whether $A[u]=A[v]$?

connected components

Want to answer questions of the form:

- Given: vertices u and v in G
- Is there a path from u to v ?

connected components

Want to answer questions of the form:

- Given: vertices u and v in G
- Is there a path from u to v ?

Idea: create array A such that
$A[u]=$ smallest numbered vertex

Q: Why not create an array Path[u,v]? that is connected to u

- question reduces to whether $A[u]=A[v]$?

connected components

- initial state: all \mathbf{v} unvisited
for $\mathrm{s} \leftarrow \mathbf{1}$ to n do
if state $(\mathbf{s}) \neq$ "fully-explored" then
BFS(s): setting A[u] $\leftarrow \mathbf{s}$ for each \mathbf{u} found (and marking u visited/fully-explored) endif
endfor
- Total cost: $\boldsymbol{O}(n+m)$
- each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
- works also with depth first search

properties of DFS(s)

- Like BFS(s):
- DFS(s) visits x if and only if there is a path in G from s to x
- Edges into undiscovered vertices define a "depth first spanning tree" of G
- Unlike the BFS tree:
- the DFS spanning tree isn't minimum depth
- its levels don't reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels
- but...

DFS(u) - recursive version

```
Global Initialization: mark all vertices "unvisited"
DFS(u)
    mark u "visited" and add u to R
    for each edge (u,v)
        if (v is "unvisited")
            DFS(v)
    mark u "fully-explored"
```


non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges.

bipartite graph

Definition:

Theorem:

Graph is bipartite iff does not contain an odd cycle.

DFS(v) for a directed graph

