CSE 421.: Algorithms

Winter 2014
Lecture 5: Graphs and graph traversal Il

Reading: Sections 3.1-3.2

undirected graphs

undirected graphs

Two representations:
- adjacency list
- adjacency matrix

Dense graphs vs. sparse graphs
0(n?) edges 0(n) edges

&
&

n = |V|,m = |E|

Mathematically, a graph is a pair G = (V,E)
of vertices (V) and edges (E). The edges are simply
unordered pairs of vertices, i.e. {u, v} foru,v € V.

A
%

n=|V|,m = |E|

euler tours

Euler: Is it possible to walk over each bridge exactly
once and then return to the starting point?

1/14/2014

1/14/2014

eulerian graphs

eulerian graphs
A graph is Eulerian if there exists a tour that crosses

every edge exactly once.

A graph is Eulerian if there exists a tour that crosses
every edge exactly once.

eulerian graphs

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if Theorem: An undirected graph is Eulerian if and only if
it is connected and every vertex has even degree!

it is connected and every vertex has even degree!

E Proof.

Easier direction:
\D Eulerian — connected and all degrees even.

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if
it is connected and every vertex has even degree!

Proof.

Harder direction: connected and all degrees — Eulerian

Strategy: Find a simple cycle (no vertex repeated) in
the graph. Then remove it and induct.

ZaY

—4

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if
it is connected and every vertex has even degree!

Proof.
Harder direction: connected and all degrees — Eulerian

Strategy: Find a simple cycle (no vertex repeated) in
the graph. Then remove it and induct.

After cycle removed, degrees still even.
Why can we patch cycles together?

Base case?

1/14/2014

eulerian graphs

Theorem: An undirected graph is Eulerian if and only if
it is connected and every vertex has even degree!

Proof.

Harder direction: connected and all degrees — Eulerian

Strategy: Find a simple cycle (no vertex repeated) in
the graph. Then remove it and induct.

one last step...

Prove that every graph with all degrees even contains
a simple cycle (i.e. with no vertices repeated).

euler tours

NO: There are odd degree vertices.

the profundity of algorithms

find a tour that visits every find a tour that visits every
edge exactly once vertex exactly once

<« 1second on 100,000 node graph fastest known algorithm on 100
(fastest algorithm, 1 op/nanosec) node graph takes > 1,000,000 years

the profundity of algorithms

find a tour that visits every
edge exactly once

<« 1 second on 100,000 node graph
(fastest algorithm, 1 op/nanosec)

directed graphs

A directed graph (digraph for short) is a pair

G = (V,E) of vertices (V) and edges (E). The edges
are now ordered pairs of vertices, i.e. (u, v) for
uvev. ©

7

1/14/2014

directed path

A path in a directed graph is a sequence of nodes
V4, V3, ..., V), such that (v;, v;,1) are connected by an edge
fori=1,2,..,k— 1.

0r >
Ny

Vo

©<0

(e.g. web link structure)

graph traversal

graph traversal

We are interested in algorithmic questions like:
How can we determine if a graph is connected (and do
it fast)?

Goal of traversal:
— Learn the basic structure of a graph

— Walk from a fixed starting vertex s to find all vertices
reachable from s

Three states of vertices
— unvisited
— visited/discovered
— fully-explored

We are interested in algorithmic questions like:
How can we determine if a graph is connected (and do
it fast)?

generic graph traversal algorithm

Find: Set R of vertices reachable from sV

Reachable(s):
R « {s}
While there is an edge (u, v)E with ucR and v¢R
Add v to R

1/14/2014

generic traversal always works

Claim:

At termination R is the set of nodes reachable from s

Proof:

c: For every node veR there is a path from s to v
2: Suppose there is a node wzR reachable from
s via a path P
Take first node v on P such that v¢R
Predecessor u of v in P satisfies
uUE€ER
(uw,v)eE
But this contradicts the fact that the algorithm exited
the while loop.

breadth-first search

* Completely explore the vertices in order of their
distance from s

* Naturally implemented using a queue

@
©<0®

1/14/2014

generic graph traversal algorithm

Find: Set R of vertices reachable from sV

Reachable(s):
R « {s}
While there is an edge (u, v)eE with ucR and v¢R

Add v to R /1

We didn’t specify the order in which to check the edges.
Different orders lead to algorithms with different properties.
Two main examples:

BFS (breadth-first search) and DFS (depth-first search)

depth-first search

* Completely explore the vertices in DFS order (duh)
* Naturally implemented using recursion

©<®

BFS

BFS

Global initialization: mark all vertices “unvisited”
BFS(s)
mark s “visited”; R<{s}; layer Ly<{s}
while L; not empty
Ly« d
for each uel,;
for each edge (u,v)
if (v is “unvisited”)
mark v “visited”
Add v to set R and to layer L;,,
Mark u “fully-explored”
i i+l

properties of BFS

Global initialization: mark all vertices “unvisited”
BFS(s)

mark s “visited”; R<{s}; layer Ly<{s}

while L; not empty

Ly« 9 total running time:

for each uel,; O(m+n)
for each edge (u,v)
if (v is “unvisited”)
mark v “visited”
Add v to set R and to layer L;,,
mark u “fully-explored”
i i+l

properties of BFS

* BFS(s) visits x if and only if there is a path in G from s to x.

* Edges followed to undiscovered vertices define a
“pbreadth first spanning tree" of G

= Layer iin this tree, L

— those vertices u such that the shortest path in G from

the root s is of length i.

* On undirected graphs

— All non-tree edges join vertices on the same or adjacent

layers

On undirected graphs:

All non-tree edges join vertices on the same or
adjacent layers.

1/14/2014

1/14/2014

BFS application: shortest paths connected components

Tree gives shortest

paths from start vertex Want to answer questions of the form:

— Given: verticesuand vin G
— Is there a path from u to v?

can label by distances from start

connected components connected components

Want to answer questions of the form:
— Given: verticesuand v in G
— Is there a path from u to v?

Want to answer questions of the form:
— Given: vertices uand v in G
— Is there a path from u to v?

Q: why
not create

Idea: create array A such that Idea: create array A such that an array
A[u] = smallest numbered vertex Pathfu,v]?

A[u] = smallest numbered vertex
that is connected to u
— question reduces to whether A[u] = A[v]?

that is connected to u
— question reduces to whether A[u] = A[v]?

connected components

DFS(u) - recursive version

* initial state: all v unvisited
fors <« 1tondo
if state(s) = “fully-explored” then
BFS(s): setting A[u] <—s for each u found
(and marking u visited/fully-explored)
endif
endfor

* Total cost: O(n + m)

— each vertex is touched once in this outer procedure and
the edges examined in the different BFS runs are
disjoint

— works also with depth first search

properties of DFS(s)

Global Initialization: mark all vertices “unvisited”
DFS(u)
mark u “visited” and add u to R
for each edge (u,v)
if (v is “unvisited”)
DFS(v)
mark u “fully-explored”

non-tree edges

* Like BFS(s):
— DFS(s) visits x if and only if there is a path in G from s to x
— Edges into undiscovered vertices define a "depth first
spanning tree" of G
* Unlike the BFS tree:
— the DFS spanning tree isn't minimum depth
— its levels don't reflect min distance from the root
— non-tree edges never join vertices on the same or adjacent
levels

* but...

* All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

* No cross edges.

1/14/2014

bipartite graph

Definition:

Theorem:

Graph is bipartite iff does not contain an odd cycle.

DFS(v) for a directed graph

1/14/2014

BFS for bipartite testing

DFS(v)

'}D dees

/@< ®

\43

'-...edges

®"]
! ®)
@ I <« cross edges I

\ SeT | NO — cross edges |

©,
«
back edges
!

10

