
1/14/2014 

1 

CSE 421: Algorithms 

Winter 2014 

Lecture 5: Graphs and graph traversal II 

 

Reading:  Sections 3.1-3.2 

undirected graphs 

Mathematically, a graph is a pair 𝑮 = (𝑽, 𝑬) 

of vertices (𝑽) and edges (𝑬).  The edges are simply 

unordered pairs of vertices, i.e. {𝒖, 𝒗} for 𝒖, 𝒗 ∈ 𝑽. 

𝒏 = 𝑽 , 𝒎 = |𝑬| 

undirected graphs 

Two representations: 

 - adjacency list 

 - adjacency matrix 

 

Dense graphs vs. sparse graphs 

  Θ 𝑛2  edges           𝑂 𝑛  edges 

 

𝒏 = 𝑽 , 𝒎 = |𝑬| 

euler tours 

Euler:  Is it possible to walk over each bridge exactly 

once and then return to the starting point? 

 

 

 

 

(Glorious Konigsberg) 
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eulerian graphs 

A graph is Eulerian if there exists a tour that crosses 

every edge exactly once. 

 

 

 

eulerian graphs 

A graph is Eulerian if there exists a tour that crosses 

every edge exactly once. 

 

 

 

eulerian graphs 

Theorem:  An undirected graph is Eulerian if and only if 

it is connected and every vertex has even degree! 

eulerian graphs 

Theorem:  An undirected graph is Eulerian if and only if 

it is connected and every vertex has even degree! 

Proof. 

Easier direction:  

Eulerian → connected and all degrees even. 
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eulerian graphs 

Theorem:  An undirected graph is Eulerian if and only if 

it is connected and every vertex has even degree! 

Proof. 

Harder direction:   connected and all degrees → Eulerian 

  Strategy:  Find a simple cycle (no vertex repeated) in 

the graph.  Then remove it and induct. 

eulerian graphs 

Theorem:  An undirected graph is Eulerian if and only if 

it is connected and every vertex has even degree! 

Proof. 

Harder direction:   connected and all degrees → Eulerian 

  Strategy:  Find a simple cycle (no vertex repeated) in 

the graph.  Then remove it and induct. 

eulerian graphs 

Theorem:  An undirected graph is Eulerian if and only if 

it is connected and every vertex has even degree! 

Proof. 

Harder direction:   connected and all degrees → Eulerian 

  Strategy:  Find a simple cycle (no vertex repeated) in 

the graph.  Then remove it and induct. 

 

After cycle removed, degrees still even. 

 

Why can we patch cycles together? 

 

Base case? 

one last step... 

Prove that every graph with all degrees even contains 

a simple cycle (i.e. with no vertices repeated). 
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euler tours 

NO:  There are odd degree vertices. 

(Glorious Konigsberg) 

the profundity of algorithms 

find a tour that visits every 
edge exactly once 

≪ 1 second on 100,000 node graph 

(fastest algorithm, 1 op/nanosec) 

the profundity of algorithms 

find a tour that visits every 
edge exactly once 

find a tour that visits every 
vertex exactly once 

≪ 1 second on 100,000 node graph 

(fastest algorithm, 1 op/nanosec) 
fastest known algorithm on 100 

node graph takes ≫ 1,000,000 years 

directed graphs 

A directed graph (digraph for short) is a pair 

𝑮 = (𝑽, 𝑬) of vertices (𝑽) and edges (𝑬).  The edges 

are now ordered pairs of vertices, i.e. (𝒖, 𝒗) for 

𝒖, 𝒗 ∈ 𝑽. 
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directed path 
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A path in a directed graph is a sequence of nodes 

𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌 such that 𝒗𝒊, 𝒗𝒊+𝟏  are connected by an edge 

for 𝑖 = 1,2, … , 𝑘 − 1. 

(e.g. web link structure) 

graph traversal 

We are interested in algorithmic questions like: 

How can we determine if a graph is connected (and do 

it fast)? 

graph traversal 

We are interested in algorithmic questions like: 

How can we determine if a graph is connected (and do 

it fast)? 

Goal of traversal: 

– Learn the basic structure of a graph 

– Walk from a fixed starting vertex s to find all vertices 
reachable from s 

 

Three states of vertices 

– unvisited 

– visited/discovered 

– fully-explored 

generic graph traversal algorithm 

Find:  Set 𝑹 of vertices reachable from 𝒔𝑽 

 

Reachable(𝒔):  

𝑹  {𝒔} 

While there is an edge (𝒖, 𝒗)𝑬 with 𝒖𝑹 and 𝒗𝑹 

       Add 𝒗 to 𝑹 
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generic traversal always works 

Claim:  

At termination 𝑹 is the set of nodes reachable from 𝒔 

 

Proof: 

: For every node 𝒗𝑹 there is a path from 𝒔 to 𝒗 

: Suppose there is a node 𝒘𝑹 reachable from 

  𝒔 via a path 𝑷 

Take first node 𝒗 on 𝑷 such that 𝒗𝑹 

Predecessor 𝒖 of 𝒗 in 𝑷 satisfies 

 𝒖 ∈ 𝑹 

 (𝒖, 𝒗)𝑬 

But this contradicts the fact that the algorithm exited 

the while loop.  

generic graph traversal algorithm 

Find:  Set 𝑹 of vertices reachable from 𝒔𝑽 

 

Reachable(𝒔):  

𝑹  {𝒔} 

While there is an edge (𝒖, 𝒗)𝑬 with 𝒖𝑹 and 𝒗𝑹 

       Add 𝒗 to 𝑹 

We didn’t specify the order in which to check the edges. 

Different orders lead to algorithms with different properties. 

Two main examples: 

BFS (breadth-first search) and DFS (depth-first search) 

breadth-first search 

• Completely explore the vertices in order of their 

distance from 𝑠 

• Naturally implemented using a queue 
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depth-first search 

• Completely explore the vertices in DFS order (duh) 

• Naturally implemented using recursion 
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BFS 

Global initialization: mark all vertices “unvisited” 

BFS(s)  

mark s “visited”; R{s}; layer L0{s} 

while Li not empty 

     Li+1   

for each uLi  

    for each edge (u,v) 

 if (v is “unvisited”)  

  mark v “visited” 

  Add v to set R and to layer Li+1 

   Mark u “fully-explored” 

i  i+1 

BFS 

Global initialization: mark all vertices “unvisited” 

BFS(s)  

mark s “visited”; R{s}; layer L0{s} 

while Li not empty 

     Li+1   

for each uLi  

    for each edge (u,v) 

 if (v is “unvisited”)  

  mark v “visited” 

  Add v to set R and to layer Li+1 

   mark u “fully-explored” 

i  i+1 

total running time: 

𝑂(𝑚 + 𝑛) 

properties of BFS 

• BFS(s) visits x if and only if there is a path in G from s to x. 
 

• Edges followed to undiscovered vertices define a 

“breadth first spanning tree" of G 
 

• Layer i in this tree, Li 

– those vertices u such that the shortest path in G from 
the root s is of length i. 

 

• On undirected graphs 

– All non-tree edges join vertices on the same or adjacent 
layers 

properties of BFS 

On undirected graphs: 

All non-tree edges join vertices on the same or 
adjacent layers. 
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BFS application: shortest paths 
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Tree gives shortest  

paths from start vertex 

connected components 

Want to answer questions of the form: 

– Given: vertices 𝒖 and 𝒗 in 𝑮  

– Is there a path from 𝒖 to 𝒗? 

connected components 

Want to answer questions of the form: 

– Given: vertices 𝒖 and 𝒗 in 𝑮  

– Is there a path from 𝒖 to 𝒗? 

 

Idea: create array 𝑨 such that                    

  𝑨[𝒖] = smallest numbered vertex                          

             that is connected to 𝒖 

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]? 

 

 

connected components 

Want to answer questions of the form: 

– Given: vertices 𝒖 and 𝒗 in 𝑮  

– Is there a path from 𝒖 to 𝒗? 

 

Idea: create array 𝑨 such that                    

  𝑨[𝒖] = smallest numbered vertex                          

             that is connected to 𝒖 

– question reduces to whether 𝑨[𝒖] = 𝑨[𝒗]? 

 

 

Q: Why 

not create 

an array 

Path[u,v]? 
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connected components 

• initial state:  all v unvisited 
 for s  1 to n do                                                  

  if state(s)  “fully-explored” then                                  
   BFS(s): setting A[u] s for each u found  
    (and marking u visited/fully-explored)          
  endif                                                                               
 endfor 

 

• Total cost: 𝑶(𝒏 + 𝒎) 

– each vertex is touched once in this outer procedure and 
the edges examined in the different BFS runs are 
disjoint  

– works also with depth first search 

DFS(u) – recursive version 

Global Initialization: mark all vertices “unvisited” 

DFS(u) 

 mark u “visited” and add u to R 

 for each edge (u,v) 

  if (v is “unvisited”)  

   DFS(v) 

 mark u “fully-explored” 

properties of DFS(s) 

• Like BFS(s): 

– DFS(s) visits x if and only if there is a path in G from s to x  

– Edges into undiscovered vertices define a "depth first 
spanning tree" of G 

• Unlike the BFS tree:  

– the DFS spanning tree isn't minimum depth 

– its levels don't reflect min distance from the root 

– non-tree edges never join vertices on the same or adjacent 
levels 

• but… 

non-tree edges 

• All non-tree edges join a vertex and one of its 

descendents/ancestors in the DFS tree 

 

• No cross edges. 
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bipartite graph 

Definition: 

Theorem:  

Graph is bipartite iff does not contain an odd cycle. 

BFS for bipartite testing 
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tree edges 

back edges 

forward  

edges 

   cross edges     

NO  cross edges 


