
1/10/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 3: Asymptotic analysis

Reading: Chapter 2 of Kleinberg-Tardos

defining efficiency

“Runs fast on typical real-world problem instances”

• Pro: sensible, straight to the point

• Cons:

– moving target (different computers, architectures, compilers,

Moore’s law)

– highly subjective (how fast is “fast”? what is “typical”?)

defining efficiency

“Runs fast on a specific suite of benchmarks”

• Pro: sensible, straight to the point

• Cons:

– previous problems

– which benchmarks?

– algorithms can be tuned to do well on the benchmarks

– have to find a benchmark before we can compare

algorithms? (design would take forever)

defining efficiency

Instead, we:

• Give up on detailed timing, focus on scaling.

• Give up on “typical.” Focus on worst-case behavior.

1/10/2014

2

defining efficiency: the RAM model

• RAM = Random Access Machine

• Time # of instructions executed in an ideal

assembly language

– each simple operation (+,*,-,=, if, call) takes one

time step

– each memory access takes one time step

complexity analysis

• Problem size 𝑵

– Worst-case complexity: max # steps algorithm

takes on any input of size 𝑵

– Average-case complexity: average # steps

algorithm takes on inputs of size 𝑵

complexity

• The complexity of an algorithm associates a number 𝑻(𝑵),
the worst/average-case/best time the algorithm takes,

with each problem size 𝑵.

• Mathematically,

– 𝑻:ℕ → ℝ≥𝟎 is a function that maps positive integers

giving problem size to positive real numbers giving

number of steps

complexity

Problem size 𝑵

𝑻(𝑵)

1/10/2014

3

complexity

𝑻(𝑵)

Problem size 𝑵

asymptotic growth rates

Given two functions 𝑓, 𝑔 ∶ ℕ → ℝ+

• 𝑓 𝑛 is 𝑂 𝑔 𝑛 iff there is a constant 𝑐 > 0

 so that 𝑓(𝑛) is eventually always ≤ 𝑐 ⋅ 𝑔(𝑛)

• 𝑓 𝑛 is Ω 𝑔 𝑛 iff there is a constant 𝑐 > 0

 so that 𝑓(𝑛) is eventually always ≥ 𝑐 ⋅ 𝑔(𝑛)

• 𝑓(𝑛) is Θ 𝑔 𝑛 iff it is both 𝑂(𝑔 𝑛) and Ω 𝑔 𝑛

Upper bounds
≤

Lower bounds
≥

≈

little-o

Given two functions 𝑓, 𝑔 ∶ ℕ → ℝ+

example

Show that 10𝑛2 − 16𝑛 + 100 is Ω 𝑛2

1/10/2014

4

asymptotic bounds for polynomials

𝑝 𝑛 = 𝑎0 + 𝑎1𝑛 + ⋯+ 𝑎𝑑𝑛
𝑑 is Θ(𝑛𝑑) if 𝑎𝑑 > 0

asymptotics of...

 𝑖

𝑛

𝑖=1

properties

transitivity

additivity

logarithmic vs. polynomial vs. exponential

logb 𝑛 = 𝑜 𝑛
𝑎 = 𝑜 𝑐𝑛

for all constants 𝑎, 𝑏, and 𝑐

1/10/2014

5

scaling polynomial time = “efficient”

𝑃 = class of problems solvable by algorithms

 running in polynomial time, i.e. 𝑂 𝑛𝑑 for

 some constant 𝑑

scaling: When input size doubles, running time

 increases by a constant factor.

vs exponential

h

e

b

interval scheduling

• Input. Set of jobs with start times and finish times.

• Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

a

c

d

jobs don't overlap

h

e

b

h

e

b

interval scheduling

• Input. Set of jobs with start times and finish times.

• Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

a

c

d

jobs don't overlap

1/10/2014

6

weighted interval scheduling

• Input. Set of jobs with start times, finish times, and weights.

• Goal. Find maximum weight subset of mutually compatible jobs.

Time

0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

bipartite matching

• Input. Bipartite graph.

• Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

bipartite matching

• Input. Bipartite graph.

• Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

independent set

• Input. Graph.

• Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4

1/10/2014

7

representative problems

• Variations on a theme: independent set.

• Interval scheduling: 𝑂(𝑛 log 𝑛) greedy algorithm.

• Weighted interval scheduling: 𝑂(𝑛 log 𝑛) dynamic
programming algorithm.

• Bipartite matching: 𝑂 𝑛𝑘 max-flow based
algorithm.

• Independent set: NP-complete.

• Competitive facility location: PSPACE-complete

 (see book)

