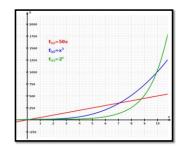
CSE 421: Algorithms

Winter 2014 Lecture 3: Asymptotic analysis

Reading: Chapter 2 of Kleinberg-Tardos



defining efficiency

"Runs fast on typical real-world problem instances"

- Pro: sensible, straight to the point
- Cons:
 - moving target (different computers, architectures, compilers, Moore's law)
 - highly subjective (how fast is "fast"? what is "typical"?)

defining efficiency

"Runs fast on a specific suite of benchmarks"

- Pro: sensible, straight to the point
- · Cons:
 - previous problems
 - which benchmarks?
 - algorithms can be tuned to do well on the benchmarks
 - have to find a benchmark before we can compare algorithms? (design would take forever)

defining efficiency

Instead, we:

- Give up on detailed timing, focus on scaling.
- Give up on "typical." Focus on worst-case behavior.

defining efficiency: the RAM model

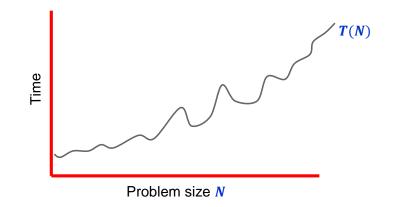
- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
 - each simple operation (+,*,-,=, if, call) takes one time step
 - each memory access takes one time step

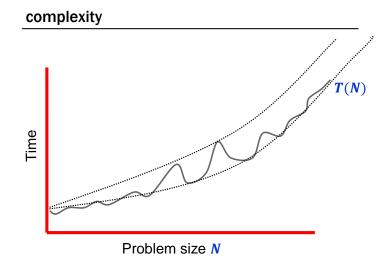
complexity analysis

- Problem size N
 - Worst-case complexity: max # steps algorithm takes on any input of size N
 - Average-case complexity: average # steps algorithm takes on inputs of size N

complexity

- The complexity of an algorithm associates a number T(N), the worst/average-case/best time the algorithm takes, with each problem size N.
- · Mathematically,
 - $T: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is a function that maps positive integers giving problem size to positive real numbers giving number of steps





asymptotic growth rates

Given two functions $f, g: \mathbb{N} \to \mathbb{R}_+$

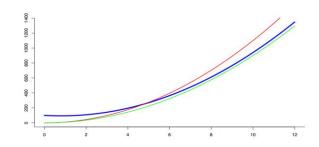
- f(n) is O(g(n)) iff there is a constant c > 0so that f(n) is eventually always $\leq c \cdot g(n)$ \leq
- f(n) is $\Omega(g(n))$ iff there is a constant c > 0so that f(n) is eventually always $\ge c \cdot g(n)$ \ge
- f(n) is $\Theta(g(n))$ iff it is both O(g(n)) and $\Omega(g(n)) \approx$

little-o

Given two functions $f, g : \mathbb{N} \to \mathbb{R}_+$

example

Show that $10n^2 - 16n + 100$ is $\Omega(n^2)$



asymptotic bounds for polynomials

 $p(n) = a_0 + a_1 n + \dots + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$

asymptotics of...

properties

transitivity

logarithmic vs. polynomial vs. exponential

 $\log_{\rm b}(n) = o(n^a) = o(c^n)$

for all constants *a*, *b*, and *c*

additivity

scaling

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n ²	n ³	1.5 ⁿ	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

polynomial time = "efficient"

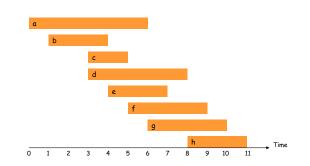
- P = class of problems solvable by algorithms running in **polynomial time**, i.e. $O(n^d)$ for some constant d
- scaling: When input size doubles, running time increases by a constant factor.

vs exponential

interval scheduling

- Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.

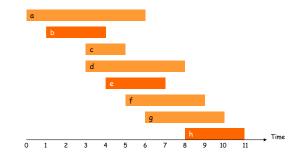
jobs don't overlap



interval scheduling

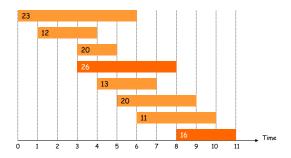
- · Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.

jobs don't overlap



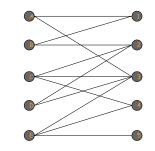
weighted interval scheduling

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.



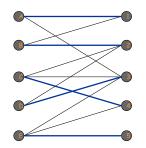
bipartite matching

- Input. Bipartite graph.
- · Goal. Find maximum cardinality matching.



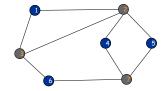
bipartite matching

- Input. Bipartite graph.
- Goal. Find maximum cardinality matching.



independent set

- Input. Graph.
- Goal. Find maximum cardinality independent set.



representative problems

- Variations on a theme: independent set.
- Interval scheduling: $O(n \log n)$ greedy algorithm.
- Weighted interval scheduling: $O(n \log n)$ dynamic programming algorithm.
- Bipartite matching: $O(n^k)$ max-flow based algorithm.
- Independent set: NP-complete.
- Competitive facility location: PSPACE-complete
 (see book)