CSE 421.: Algorithms

Winter 2014
Lecture 3: Asymptotic analysis

Reading: Chapter 2 of Kleinberg-Tardos

defining efficiency

defining efficiency

“Runs fast on a specific suite of benchmarks”

* Pro: sensible, straight to the point

* Cons:
— previous problems
— which benchmarks?
— algorithms can be tuned to do well on the benchmarks

— have to find a benchmark before we can compare
algorithms? (design would take forever)

“Runs fast on typical real-world problem instances”

* Pro: sensible, straight to the point

* Cons:

— moving target (different computers, architectures, compilers,
Moore’s law)

— highly subjective (how fast is “fast”? what is “typical”?)

defining efficiency

Instead, we:

* Give up on detailed timing, focus on scaling.

* Give up on “typical.” Focus on worst-case behavior.

1/10/2014

defining efficiency: the RAM model

¢ RAM = Random Access Machine

* Time ~ # of instructions executed in an ideal
assembly language

— each simple operation (+,*,-,=, if, call) takes one
time step

— each memory access takes one time step

complexity

* The complexity of an algorithm associates a number T(N),
the worst/average-case/best time the algorithm takes,
with each problem size N.

* Mathematically,

— T:N - R, is a function that maps positive integers
giving problem size to positive real numbers giving
number of steps

1/10/2014

complexity analysis

* Problem size N

— Worst-case complexity: max # steps algorithm
takes on any input of size N

— Average-case complexity: average # steps
algorithm takes on inputs of size N

complexity

T(N)

Time

Problem size N

1/10/2014

complexity asymptotic growth rates

Given two functions f,g : N - R,

* f(n)is 0(g(n)) iff there is a constant ¢ > 0 Upper bounds
so that f(n) is eventually always < c - g(n) <

* f(n)is Q(g(n)) iff there is a constant ¢ > 0 Lower bounds
so that f(n) is eventually always > c - g(n) >

Problem size N + f(n)is ©(g(n)) iff it is both 0(g(n)) and Q(g(n)) ~

little-o example
Given two functions f,g : N - R, Show that 10n2 — 16n + 100 is Q(n?)
§ -
g
g
g
§ o
g .
i

asymptotic bounds for polynomials

p(n) =ag+an+ -+ an%is0(n%) ifay >0

properties

asymptotics of...

transitivity

additivity

...
1l
=

logarithmic vs. polynomial vs. exponential

logp(n) = o(n%) = o(c™)

for all constants a, b, and ¢

1/10/2014

scaling
Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10°° years, we simply record the algorithm as
taking a very long time.

n nlog; n n? n? 1.5T 2" n!
n=10 < 1sec < 1sec < 1sec < 1sec < 1sec < 1sec 4 sec
n=30 <1 sec <lsec <1sec < 1sec < 1sec 18 min 10%° years
n =50 < 1sec < 1sec < 1 sec < 1sec 11 min 36 years very long
n=100 < 1sec < 1sec < 1 sec 1 sec 12,892 years 107 years very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

interval scheduling

* Input. Set of jobs with start times and finish times.
* Goal. Find maximum cardinality subset of mutually compatible jobs.
1

jobs don't overlap

Time

1/10/2014

polynomial time = “efficient”

P = class of problems solvable by algorithms
running in polynomial time, i.e. 0(n?) for
some constant d

scaling: When input size doubles, running time
increases by a constant factor.

vs exponential

interval scheduling

* Input. Set of jobs with start times and finish times.
¢ Goal. Find maximum cardinality subset of mutually compatible jobs.
1

jobs don't overlap

weighted interval scheduling

Input. Set of jobs with start times, finish times, and weights.

Goal. Find maximum weight subset of mutually compatible jobs.

28]

12
20
EN
13
20
1
S |
0 1 2 3 4 5 6 7 8 9 10 1

bipartite matching

bipartite matching

* Input. Bipartite graph.
* Goal. Find maximum cardinality matching.

* Input. Bipartite graph.
* Goal. Find maximum cardinality matching.

o,

independent set

* Input. Graph.
* Goal. Find maximum cardinality independent set.

1/10/2014

1/10/2014

representative problems

* Variations on a theme: independent set.

* Interval scheduling: O(nlogn) greedy algorithm.

* Weighted interval scheduling: 0 (nlogn) dynamic
programming algorithm.

- Bipartite matching: 0(n*) max-flow based
algorithm.

* Independent set: NP-complete.

* Competitive facility location: PSPACE-complete
(see book)

