CSE 421: Algorithms

Winter 2014

Lecture 26: (more!) Poly-time reductions

Reading:

Section 8.8

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS	
CHOTCHNIES RESTAURAN APPENZERS NUED FRUIT 2.15 FRENCH FRIES 2.75 SIDE SALAD 3.35 HOT WINGS 3.357 MOZZARELLA STICKS 4.20 SAMELER PLATE 5.80 SAMELER PLATE 5.80 DEDEECUTE 6.55	UED LIKE EWELY \$ UE OS UGRIN GF APPETLERS REGRE (EWELY? UHN HEKE, THESE ARDS ON THE NUMBOR TOOLES TO OCTO TO - AG TROT KA DESIGE OF COMER SOUTENIS ON TRAVELING SALESAWAY M. THE SALES TO OCTO OCTO

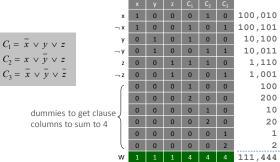
MY HOBBY:

subset sum

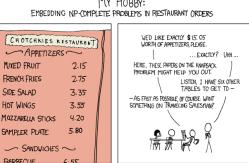
- SUBSET-SUM: Given natural numbers w₁, ..., w_n and an integer W, is there a subset that adds up to exactly W?
- Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.
- Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.
- Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.
- Claim: 3-SAT ≤ P SUBSET-SUM.
- Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

subset sum

- Construction: Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n+k digits, as illustrated below.
- Claim: Φ is satisfiable iff there exists a subset that sums to W.
- Proof: No carries possible.



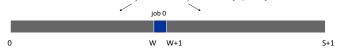
xkcd



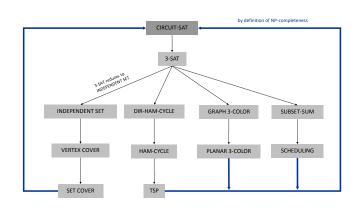
MY HOBBY:

scheduling with release times

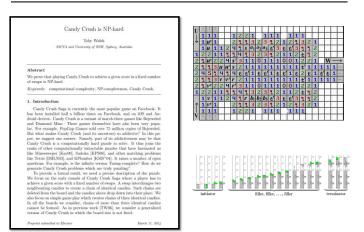
- SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time t_i, release time r_i, and deadline d_i, is it possible to schedule all jobs on a single machine such that job i is processed with a contiguous slot of t_i time units in the interval [r_i, d_i] ?
- Claim: SUBSET-SUM \leq_{P} SCHEDULE-RELEASE-TIMES.
- Pf. Given an instance of SUBSET-SUM w₁, ..., w_n, and target W,
 - Create n jobs with processing time t_i = w_i , release time r_i = 0, and no deadline (d_i = 1 + $\Sigma_i w_i$).
 - Create job 0 with t₀ = 1, release time r₀ = W, and deadline d₀ = W+1.
 Can schedule jobs 1 to n anywhere but [W, W+1]



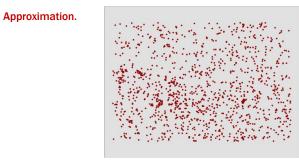
NP-completeness



NP-completeness

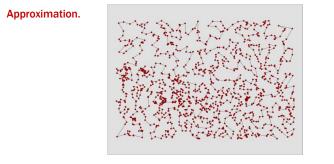


coping with NP-completeness



Euclidean TSP

coping with NP-completeness

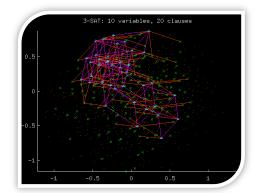


Euclidean TSP

coping with NP-completeness

Average case inputs: E.g. random 3-SAT

 $\Phi = (x_1 \vee \neg x_2 \vee x_5) \land (x_2 \vee x_4 \vee \neg x_7) \land (\neg x_3 \vee x_8 \vee \neg x_9) \land \cdots$



new algorithmic frontiers

