CSE 421: Algorithms

Winter 2014 Lecture 24-25: Poly-time reductions

Reading: Sections 8.4-8.8

 HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

 HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.

directed hamiltonian cycle

- DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?
- Claim. DIR-HAM-CYCLE \leq_{P} HAM-CYCLE.
- Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.

directed hamiltonian cycle

- Claim: G has a Hamiltonian cycle iff G' does.
- Pf. \Rightarrow
 - Suppose G has a directed Hamiltonian cycle $\Gamma.$
 - Then G' has an undirected Hamiltonian cycle (same order).
- Pf. ⇐
 - Suppose G' has an undirected Hamiltonian cycle Γ '.
 - Γ' must visit nodes in G' using one of following two orders:

..., B, G, R, B, G, R, B, G, R, B, ...

..., B, R, G, B, R, G, B, R, G, B, ...

 Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one.

- Claim: $3-SAT \leq_P DIR-HAM-CYCLE$.
- Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.
- Construction. First, create graph that has 2ⁿ Hamiltonian cycles which correspond in a natural way to 2ⁿ possible truth assignments.

- Construction. Given 3-SAT instance Φ with n variables \mathbf{x}_{i} and k clauses.
 - Construct G to have 2ⁿ Hamiltonian cycles.
 - Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$.

- Claim: Φ is satisfiable iff G has a Hamiltonian cycle.
- Pf. \Rightarrow
 - Suppose 3-SAT instance has satisfying assignment x*.
 - Then, define Hamiltonian cycle in G as follows:
 - if $x_{i}^{*} = 1$, traverse row i from left to right

if $x_{i}^{*} = 0$, traverse row i from right to left

for each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice node C_j into tour

- Pf. ⇐
 - Suppose G has a Hamiltonian cycle Γ .
 - If Γ enters clause node \mathbf{C}_{j} , it must depart on mate edge. thus, nodes immediately before and after \mathbf{C}_{j} are connected by an edge e in G

removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on G - { C_j }

– Continuing in this way, we are left with Hamiltonian cycle Γ' in

 $G - \{ C_1, C_2, \ldots, C_k \}.$

- Set $x_i = 1$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node \mathbf{C}_{j} , at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \blacksquare

- SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?
- LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?
- Claim. $3-SAT \leq P LONGEST-PATH$.
- Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring backedge from t to s.
- Pf 2. Show HAM-CYCLE \leq_{P} LONGEST-PATH.

 TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

 TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?

Optimal TSP tour Reference: http://www.tsp.gatech.edu

 TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?

11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

• **TSP.** Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour Reference: http://www.tsp.gatech.edu

3-dimensional matching

 3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

Instructor	Course	Time
Wayne	COS 423	MW 11-12:20
Wayne	COS 423	TTh 11-12:20
Wayne	COS 226	TTh 11-12:20
Wayne	COS 126	TTh 11-12:20
Tardos	COS 523	TTh 3-4:20
Tardos	COS 423	TTh 11-12:20
Tardos	COS 423	TTh 3-4:20
Kleinberg	COS 226	TTh 3-4:20
Kleinberg	COS 226	MW 11-12:20
Kleinberg	COS 423	MW 11-12:20

- **3D-MATCHING.** Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of X $\cup Y \cup Z$ is in exactly one of these triples?
- Claim. $3-SAT \leq P 3D-Matching$.
- Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable.

Construction. (part 1)

number of clauses

- Create gadget for each variable x_i with 2k core and tip elements.
- No other triples will use core elements.
- In gadget i, 3D-matching must use either both grey triples or both blue ones.

3-dimensional matching

Construction. (part 2)

- For each clause C_i create two elements and three triples.
- Exactly one of these triples will be used in any 3D-matching.
- Ensures any 3D-matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3 . $C_1 = \overline{X}, \sqrt{X}, \sqrt$

3-dimensional matching

Construction. (part 3) For each tip, add a cleanup gadget.

3-Dimensional Matching

- Claim. Instance has a 3D-matching iff Φ is satisfiable.
- Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

3-Dimensional Matching

- Claim. Instance has a 3D-matching iff Φ is satisfiable.
- Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

3-colorability

 3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

- Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.
- Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.
- Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.
- 3-COLOR \leq_{P} k-REGISTER-ALLOCATION for any constant k \geq 3.

- Claim. $3-SAT \leq P 3-COLOR$.
- Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.
- Construction.
 - i. For each literal, create a node.
 - ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
 - iii. Connect each literal to its negation.
 - iv. For each clause, add gadget of 6 nodes and 13 edges.

- Claim. Graph is 3-colorable iff Φ is satisfiable.
- Pf. \Rightarrow Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (ii) ensures each literal is T or F.
 - (iii) ensures a literal and its negation are opposites.

- Claim. Graph is 3-colorable iff Φ is satisfiable.
- Pf. \Rightarrow Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.

-SHI

~~ らーんし

- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

3-colorability

- Claim. Graph is 3-colorable iff Φ is satisfiable.
- Pf. \Rightarrow Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (ii) ensures each literal is T or F.
 - (iii) ensures a literal and its negation are opposites.
 - (iv) ensures at least one literal in each clause is T.

3-colorability

- Claim. Graph is 3-colorable iff Φ is satisfiable.
- Pf. \Leftarrow Suppose 3-SAT formula Φ is satisfiable.
 - Color all true literals T.
 - Color node below green node F, and node below that B.
 - Color remaining middle row nodes B.
 - Color remaining bottom nodes T or F as forced.

