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CSE 421.: Algorithms hamiltonian cycle

Winter 2014 _ _ « HAM-CYCLE: given an undirected graph G = (V, E),
Lecture 24-25: Poly-time reductions does there exist a simple cycle I that contains

Reading: every node in V.

Sections 8.4-8.8

hamiltonian cycle directed hamiltonian cycle

* HAM-CYCLE: given an undirected graph G = (V, E), * DIR-HAM-CYCLE: given a G = (V, E), does there
does there exist a simple cycle I" that contains exists a simple directed cycle T that contains every node in
every node in V. v?

* Claim. DIR-HAM-CYCLE < ; HAM-CYCLE.

* Pf. Given a directed graph G = (V, E), construct an
undirected graph G' with 3n nodes.

Prls e

NO: bipartite graph with odd number of nodes.
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directed hamiltonian cycle 3-SAT <, DIR-HAM-CYCLE

¢ Claim: G has a Hamiltonian cycle iff G' does. e Claim: 3-SAT <, DIR-HAM-CYCLE.

* Pfl.= « Pf. Given an instance ® of 3-SAT, we construct an
— Suppose G has a directed Hamiltonian cycle T". instance of DIR-HAM-CYCLE that has a Hamiltonian cycle
— Then G' has an undirected Hamiltonian cycle (same order). iff @ is satisfiable.

* Pl <= * Construction. First, create graph that has 2" Hamiltonian
— Suppose G' has an undirected Hamiltonian cycle I". cycles which correspond in a natural way to 2" possible
— I'" must visit nodes in G' using one of following two orders: truth assignments.

..B,GR,B,GR,B,G,R,B, ..
.,B,R G BR,GB,R,G,B,..

— Blue nodes in I make up directed Hamiltonian cycle I" in G,
or reverse of one. =

3-SAT <p DIR-HAM-CYCLE 3-SAT <, DIR-HAM-CYCLE

Construction. Given 3-SAT instance ® with n variables x; and k
clauses.

— Construct G to have 2" Hamiltonian cycles. clause node clause node

— Intuition: traverse path i from left to right < set variable x;,= 1.
_ 7*" A T N 7*’.

e
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3-SAT <, DIR-HAM-CYCLE

e Claim: O is satisfiable iff G has a Hamiltonian
cycle.

« Pf. =
— Suppose 3-SAT instance has satisfying assignment x*.
— Then, define Hamiltonian cycle in G as follows:
if x*; = 1, traverse row i from left to right
if x*, = 0, traverse row i from right to left

for each clause C;, there will be at least one row i in
which we are going in "correct" direction to splice node C
into tour

longest path

3-SAT <, DIR-HAM-CYCLE

¢ SHORTEST-PATH. Given a digraph G = (V, E), does
there exists a simple path of length k edges?

* LONGEST-PATH. Given a digraph G = (V, E), does there
exists a simple path of length k edges?

e Claim. 3-SAT <, LONGEST-PATH.

* Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-
edge from t to s.

* Pf 2. Show HAM-CYCLE < , LONGEST-PATH.

Pf. <
— Suppose G has a Hamiltonian cycle T".
— If I" enters clause node C;, it must depart on mate edge.
thus, nodes immediately before and after C;are connected by
anedgeeinG
removing C;from cycle, and replacing it with edge e yields
Hamiltonian cycle on G - {C; }
— Continuing in this way, we are left with Hamiltonian cycle I"'
in
G-{C,,C,, ..., C.}.

— Set x*; = 1iff " traverses row i left to right.

— Since I visits each clause node Cj , at least one of the paths
is traversed in "correct" direction, and each clause is
satisfied. =

traveling salesperson problem

* TSP. Given a set of n cities and a pairwise distance

function d(u, v), is there a tour of length < D?

.

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu
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traveling salesperson problem
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traveling salesperson problem

* TSP. Given a set of n cities and a pairwise distance
function d(u, v), is there a tour of length < D?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

traveling salesperson problem

* TSP. Given a set of n cities and a pairwise distance
function d(u, v), is there a tour of length < D?

11,849 holes to drill in a programmed logic array
Reference: http://www.tsp.gatech.edu

3-dimensional matching

* TSP. Given a set of n cities and a pairwise distance
function d(u v), is there a tour of length < D?
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Optimal TSP tour
Reference: http://www.tsp.gatech.edu

* 3D-MATCHING. Given n instructors, n courses, and n times,
and a list of the possible courses and times each instructor
is willing to teach, is it possible to make an assignment so
that all courses are taught at different times?




3-dimensional matching

* 3D-MATCHING. Given disjoint sets X, Y, and Z, each of
sizenand aset T < X x Y x Z of triples, does there
exist a set of n triples in T such that each element of X
U Y U Zis in exactly one of these triples?

e Claim. 3-SAT <, 3D-Matching.

* Pf. Given an instance @ of 3-SAT, we construct an
instance of 3D-matching that has a perfect matching
iff O is satisfiable.

3-dimensional matching

Construction. (part 2)
* For each clause C, create two elements and three triples.
* Exactly one of these triples will be used in any 3D-matching.

* Ensures any 3D-matching uses either (i) grey core of x, or (ii)
blue core of x, or (iii) grey core of x;.
clause 1 gadget

each clause assigned Ci=X VXV
its own 2 adjacent tips

false

3-dimensional matching

Construction. (part 1) pumber of clauses

— Create gadget for each variable x; with 2k core
and tip elements.

— No other triples will use core elements.

— In gadget i, 3D-matching must use either both
grey triples or both blue ones.

false

clause 1 tips —, core

k =2 clauses
n=3variables

3-dimensional matching

Construction. (part 3)
For each tip, add a cleanup gadget.

clause 1 gadget

cleanup gadg

false
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3-Dimensional Matching

* Claim. Instance has a 3D-matching iff @ is satisfiable.

* Detail. What are X, Y, and Z? Does each triple contain
one element from each of X, Y, Z?

clause 1 gadget

cleanup gadg

clause 1 tips

false

3-colorability

e 3-COLOR: Given an undirected graph G does there exists a
way to color the nodes red, green, and blue so that no
adjacent nodes have the same color?

yes instance
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3-Dimensional Matching

* Claim. Instance has a 3D-matching iff @ is satisfiable.

* Detail. What are X, Y, and Z? Does each triple contain
one element from each of X, Y, Z?

clause 1 gadget

cleanup gadg

register allocation

* Register allocation. Assign program variables to machine
register so that no more than k registers are used and no two
program variables that are needed at the same time are
assigned to the same register.

* Interference graph. Nodes are program variables names, edge
between u and v if there exists an operation where both u and

v are "live" at the same time.

* Observation. [Chaitin 1982] Can solve register allocation
problem iff interference graph is k-colorable.

* 3-COLOR < ; k-REGISTER-ALLOCATION for any constant k > 3.



3-colorability
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3-colorability

* Claim. 3-SAT < 3-COLOR.

* Pf. Given 3-SAT instance @, we construct an instance
of 3-COLOR that is 3-colorable iff ® is satisfiable.

* Construction.
i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a
triangle, and connect each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13
edges.

3-colorability

* Claim. Graph is 3-colorable iff @ is satisfiable.

* Pf. = Suppose graph is 3-colorable.
— Consider assighment that sets all T literals to true.
— (ii) ensures each literal is T or F.
— (iii) ensures a literal and its negation are opposites.

true false

base

3-colorability

¢ Claim. Graph is 3-colorable iff @ is satisfiable.

* Pf. = Suppose graph is 3-colorable.
— Consider assignment that sets all T literals to true.
— (ii) ensures each literal is T or F.
— (iii) ensures a literal and its negation are opposites.
— (iv) ensures at least one literal in each clause is T.

Ci =% VX VX

6-node gadget

o fase

¢ Claim. Graph is 3-colorable iff @ is satisfiable.

* Pf. = Suppose graph is 3-colorable.
— Consider assignment that sets all T literals to true.
— (ii) ensures each literal is T or F.
— (iii) ensures a literal and its negation are opposites.
— (iv) ensures at least one literal in each clause is T.

Ci=% VX VX

6-node gadget

o false



3/9/2014

3-colorability

* Claim. Graph is 3-colorable iff ® is satisfiable.
* Pf. &< Suppose 3-SAT formula @ is satisfiable.
— Color all true literals T.
— Color node below green node F, and node below that B.
— Color remaining middle row nodes B.
— Color remaining bottom nodes T or F as forced. =

a literal set fo true in 3-SAT assignment

/

C=x VX VX

true e false




