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CSE 421: Algorithms 

Winter 2014 
Lecture 24-25: Poly-time reductions 

 

Reading: 

Sections 8.4-8.8 

hamiltonian cycle 

• HAM-CYCLE:  given an undirected graph G = (V, E), 

does there exist a simple cycle  that contains 

every node in V. 

hamiltonian cycle 

• HAM-CYCLE:  given an undirected graph G = (V, E), 

does there exist a simple cycle  that contains 

every node in V. 
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NO:  bipartite graph with odd number of nodes. 

directed hamiltonian cycle 

• DIR-HAM-CYCLE:  given a digraph G = (V, E), does there 

exists a simple directed cycle  that contains every node in 

V? 

 

• Claim.  DIR-HAM-CYCLE  P HAM-CYCLE. 

• Pf.  Given a directed graph G = (V, E), construct an 

undirected graph G' with 3n nodes. 
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directed hamiltonian cycle 

• Claim:  G has a Hamiltonian cycle iff G' does. 

 

• Pf.   

– Suppose G has a directed Hamiltonian cycle . 

– Then G' has an undirected Hamiltonian cycle (same order). 

 

• Pf.   

– Suppose G' has an undirected Hamiltonian cycle '. 

– ' must visit nodes in G' using one of following two orders: 

   …, B, G, R, B, G, R, B, G, R, B, …  

   …, B, R, G, B, R, G, B, R, G, B, …  

– Blue nodes in ' make up directed Hamiltonian cycle  in G, 

or reverse of one.   ▪ 

 

3-SAT ≤𝑃 DIR-HAM-CYCLE 

• Claim:  3-SAT  P DIR-HAM-CYCLE. 

 

• Pf.   Given an instance  of 3-SAT, we construct an 

instance of DIR-HAM-CYCLE that has a Hamiltonian cycle 

iff  is satisfiable. 

 

• Construction.  First, create graph that has 2n Hamiltonian 

cycles which correspond in a natural way to 2n possible 

truth assignments. 

3-SAT ≤𝑃 DIR-HAM-CYCLE 

• Construction.  Given 3-SAT instance  with n variables xi and k 

clauses. 

– Construct G to have 2n Hamiltonian cycles. 

– Intuition:  traverse path i from left to right    set variable xi = 1. 
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3-SAT ≤𝑃 DIR-HAM-CYCLE 
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3-SAT ≤𝑃 DIR-HAM-CYCLE 

• Claim:   is satisfiable iff G has a Hamiltonian 

cycle. 

 

• Pf.    

– Suppose 3-SAT instance has satisfying assignment x*. 

– Then, define Hamiltonian cycle in G as follows: 

if x*i = 1, traverse row i  from left to right 

if x*i = 0, traverse row i from right to left 

for each clause Cj , there will be at least one row i in 
which we are going in "correct" direction to splice node Cj 

into tour 

 

3-SAT ≤𝑃 DIR-HAM-CYCLE 

• Pf.    

– Suppose G has a Hamiltonian cycle . 

– If  enters clause node Cj , it must depart on mate edge. 

thus, nodes immediately before and after Cj are connected by 
an edge e in G 

removing Cj from cycle, and replacing it with edge e yields 
Hamiltonian cycle on G - { Cj  } 

– Continuing in this way, we are left with Hamiltonian cycle ' 

in 

G - { C1 , C2 ,  . . . , Ck }. 

– Set x*i = 1 iff ' traverses row i left to right. 

– Since  visits each clause node Cj , at least one of the paths 

is traversed in "correct" direction, and each clause is 

satisfied.   ▪ 

 

longest path 

• SHORTEST-PATH.  Given a digraph G = (V, E), does 

there exists a simple path of length at most k edges? 

 

• LONGEST-PATH.  Given a digraph G = (V, E), does there 

exists a simple path of length at least k edges? 

 

• Claim.  3-SAT  P LONGEST-PATH. 

 

• Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-

edge from t to s. 

• Pf 2. Show HAM-CYCLE  P LONGEST-PATH. 

traveling salesperson problem 

• TSP.  Given a set of n cities and a pairwise distance 

function d(u, v), is there a tour of length  D? 

 

 

All 13,509 cities in US with a population of at least 500 
Reference:  http://www.tsp.gatech.edu 
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traveling salesperson problem 

• TSP.  Given a set of n cities and a pairwise distance 

function d(u, v), is there a tour of length  D? 

 

 

Optimal TSP tour 
Reference:  http://www.tsp.gatech.edu 

traveling salesperson problem 

11,849 holes to drill in a programmed logic array 
Reference:  http://www.tsp.gatech.edu 

• TSP.  Given a set of n cities and a pairwise distance 

function d(u, v), is there a tour of length  D? 

 

 

traveling salesperson problem 

Optimal TSP tour 
Reference:  http://www.tsp.gatech.edu 

• TSP.  Given a set of n cities and a pairwise distance 

function d(u, v), is there a tour of length  D? 

 

 

3-dimensional matching 

• 3D-MATCHING.  Given n instructors, n courses, and n times, 

and a list of the possible courses and times each instructor 

is willing to teach, is it possible to make an assignment so 

that all courses are taught at different times? 

Instructor Course Time 

Wayne COS 423 MW 11-12:20 

Wayne COS 423 TTh 11-12:20 

Wayne COS 226 TTh 11-12:20 

Wayne COS 126 TTh 11-12:20 

Tardos COS 523 TTh 3-4:20 

Tardos COS 423 TTh 11-12:20 

Tardos COS 423 TTh 3-4:20 

Kleinberg COS 226 TTh 3-4:20 

Kleinberg COS 226 MW 11-12:20 

Kleinberg COS 423 MW 11-12:20 
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3-dimensional matching 

• 3D-MATCHING.  Given disjoint sets X, Y, and Z, each of 

size n and a set T  X  Y  Z of triples, does there 

exist a set of n triples in T such that each element of X 

 Y  Z is in exactly one of these triples? 

 

• Claim.  3-SAT  P 3D-Matching. 

• Pf.  Given an instance  of 3-SAT, we construct an 

instance of 3D-matching that has a perfect matching 

iff  is satisfiable. 

 

 

3-dimensional matching 

Construction.  (part 1) 

– Create gadget for each variable xi with 2k core 

and tip elements. 

– No other triples will use core elements. 

– In gadget i, 3D-matching must use either both 

grey triples or both blue ones. 

x1 x3 x2 

core 

number of clauses 

k = 2 clauses 
n = 3 variables 

true 

false 

clause 1 tips 

3-dimensional matching 

Construction.  (part 2) 

• For each clause Cj create two elements and three triples. 

• Exactly one of these triples will be used in any 3D-matching. 

• Ensures any 3D-matching uses either (i) grey core of x1 or (ii) 

blue core of x2 or (iii) grey core of x3. 

x1 x3 x2 

core 

  



C j    x1  x2  x3each clause assigned 
its own 2 adjacent tips 

true 

false 

clause 1 gadget 

clause 1 tips 

3-dimensional matching 

Construction.  (part 3)   

For each tip, add a cleanup gadget. 

 

x1 x3 x2 

core 

cleanup gadget 

clause 1 gadget 

true 

false 

clause 1 tips 
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3-Dimensional Matching 

• Claim.  Instance has a 3D-matching iff  is satisfiable. 

• Detail.  What are X, Y, and Z?  Does each triple contain 

one element from each of X, Y, Z? 

 

x1 x3 x2 

core 

cleanup gadget 

clause 1 gadget 

true 

false 

clause 1 tips 

3-Dimensional Matching 

x1 x3 x2 

core 

cleanup gadget 

clause 1 gadget 

• Claim.  Instance has a 3D-matching iff  is satisfiable. 

• Detail.  What are X, Y, and Z?  Does each triple contain 

one element from each of X, Y, Z? 

 

clause 1 tips 

3-colorability 

• 3-COLOR:  Given an undirected graph G does there exists a 

way to color the nodes red, green, and blue so that no 

adjacent nodes have the same color? 

 

yes instance 

register allocation 

• Register allocation.   Assign program variables to machine 

register so that no more than k registers are used and no two 

program variables that are needed at the same time are 

assigned to the same register. 

 

• Interference graph.   Nodes are program variables names, edge 

 between u and v if there exists an operation where both u and  

 v are "live" at the same time. 

 

• Observation.  [Chaitin 1982]  Can solve register allocation 

problem iff interference graph is k-colorable. 

 

• 3-COLOR  P k-REGISTER-ALLOCATION for any constant k  3. 
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3-colorability 

• Claim.  3-SAT  P 3-COLOR. 

 

• Pf.  Given 3-SAT instance , we construct an instance 

of 3-COLOR that is 3-colorable iff  is satisfiable. 

• Construction. 

i. For each literal, create a node. 

ii. Create 3 new nodes T, F, B; connect them in a 

triangle, and connect each literal to B. 

iii. Connect each literal to its negation. 

iv. For each clause, add gadget of 6 nodes and 13 

edges. 

 

 

3-colorability 

• Claim.  Graph is 3-colorable iff  is satisfiable. 

• Pf.    Suppose graph is 3-colorable. 

– Consider assignment that sets all T literals to true. 

– (ii) ensures each literal is T or F. 

– (iii) ensures a literal and its negation are opposites. 
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3-colorability 

• Claim.  Graph is 3-colorable iff  is satisfiable. 

• Pf.    Suppose graph is 3-colorable. 

– Consider assignment that sets all T literals to true. 

– (ii) ensures each literal is T or F. 

– (iii) ensures a literal and its negation are opposites. 

– (iv) ensures at least one literal in each clause is T. 

 

 

T F 

B 
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x1
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x
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x3   



Ci  x1 V x2 V x3

6-node gadget 

true false 

3-colorability 

• Claim.  Graph is 3-colorable iff  is satisfiable. 

• Pf.    Suppose graph is 3-colorable. 

– Consider assignment that sets all T literals to true. 

– (ii) ensures each literal is T or F. 

– (iii) ensures a literal and its negation are opposites. 

– (iv) ensures at least one literal in each clause is T. 

 

 

T F 

B 



x1



x
2



x3   



Ci  x1 V x2 V x3

6-node gadget 

true false 



3/9/2014 

8 

3-colorability 

• Claim.  Graph is 3-colorable iff  is satisfiable. 

• Pf.     Suppose 3-SAT formula  is satisfiable. 

– Color all true literals T. 

– Color node below green node F, and node below that B. 

– Color remaining middle row nodes B. 

– Color remaining bottom nodes T or F as forced.  ▪ 

 

T F 
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x1
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x
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x3

a literal set to true in 3-SAT assignment 

true false 

  



Ci  x1 V x2 V x3


