CSE 421.: Algorithms

Winter 2014

Lecture 23: P, NP, and reductions

Reading:
Sections 8.3-8.7

MY HoBBY:

EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT

«— APPENZERS —

MIXED FRUIT 2.15
FRENCH FRIES 275
SIDE SALAD 3.35
HoT WINGS 3.55

MOZZARELA STICKS 4.20
SAMPLER PLATE 5.80

—— SANDWICHES ~—

WED LKE EXACTLY $15. 05
WORTH OF APPETIZERS, PLEASE.

1 . EXACTLY? UM

HERE, THESE PAPERS ON THE KNRPSACK.
PROBLEM MIGHT HELP YOU OUT.
LISTEN, I HAVE $1x OTHER
TABLES TO GET T0 —

—AS FRST AS PUSSIBLE, (OF (DURSE. WANT
SOMETHING 0N TRAVELING SALESHANT /

\
(XIER

polynomial time

Define P (polynomial-time) to be

— the set of all decision problems solvable by
algorithms whose worst-case running time is
bounded by some polynomial in the input size.

dLeZ on \w\fuvwsi okt YES/N O

beyond P?

* There are many other natural, practical problems
for which we don’t know any polynomial-time
algorithms

* For example: (ELecisionTSa

— Given a weighted graph G and an integer k,
does there exist a tour that visits all vertices in
G having total weight at most k?

1o o ?
2 A :
\ ol\ Q ’P

0

satisfiability

* Boolean variables xg,...,X,
— taking values in {0,1}. O=false, 1=true

* Literals
— X; or = X, for i=1,...,n

 Clause
— a logical OR of one or more literals

* CNFformula C A Cyn---nC,.
— a logical AND of a bunch of clauses

+ k-CNF formula k - 2 Ci = (Yav X v

— All clauses have exactly k variables

S I I YR CA VNN BN FRVEL LD

b .
satisfiability (& L) Xy = Xé c | 7(77

. N O e SR
* CNF formula example _ " 5

()& v—|X3vx4)/\()/\(X2v—.X1v>,(3)
. If there is some assignment of O’'s and 1's
to the variables that makes it true then we
say the formula is satisfiable
— the one above is, the following isn't X, = ©
X —Xq A (X,) A(=Xy V Xg) A—Xg < Kp= @
SAT: Given a CNF formula F with 3 V™~
variables per clause, is it satisfiable?

g
e

common property of these problems

* There is a special piece of information, a short
certificate or proof, that allows you to efficiently
verify (in polynomial-time) that the YES answer is
correct. This certificate might be very hard to find

. e.g. (6,6) ¢ w «)Mf?oé
~DecisionTSP: N 2k
(= Me clifr
:@ependent-Set, Clique: M . MN A - et (

_%.-/SAT: e ufg\gwm\’
[(TAUT OLOGY

The complexity class NP (non- sok armdnic)

o\ rovad)

NP consists of all decision problems where
* You can verify the YES answers efficiently (in
polynomial time) given a short (polynomial-size)

certificate

and

* No certificate can fool your polynomial time
verifier into saying YES for a NO instance

more precise definition of NP

* A decision problem is in NP iff there is a
polynomial time procedure verify(.,.), and an
integer k such that
— for every input x to the problem that is a YES

instance there is a certificate t with |t] < | x|k
such that verify(x,t) = YES —

and

— for every input x to the problem that is a NO
instance there does not exist a certificate t with
|t] < |x|*¥such that verify(x,t) = YES

=039 <%

<\a/>6w /) t = {);f)/S‘}

CLIQUE is in NP X = (6. k)

Q ’% D b /D 5 a |
procedure verify(x,t) "l—gﬂt U@

if X is a well-formed representation of
a graph G = (V, E) and an integer k,

and

@ a well-formed representation of a vertex
bset U of V of size Kk,

and o R@,u) s o YES
@ AT N
then output "YES &S50 ¢ s*
else output "I'm unconvinced" \,MH (6, +)
() N2 Shoren sags Y ES -
= vt \mw(’%(((qk)rt)
S&9y NO -

is it correct?

keys to showing a problem is in NP

 What's the output? (must be YES/NO)
 What must the input look like?
 Which inputs need a YES answer?

— Call such inputs YES inputs/YES instances

* For every given YES input, is there a certificate
that would help?

— OK if some inputs need no certificate

* For any given input, is there a fake certificate
that would trick you?

solving NP problems without hints

The only obvious algorithm for most of these
problems is brute force:

— try all possible certificates and check each one to see if
it works.

— Exponential time:
2" truth assignments for n variables
n! possible TSP tours of n vertices

n
(kj possible k element subsets of n vertices

etc.

what we know

* Nobody knows if all problems in NP can be done in
polynomial time, i.e. does P = NP ?

— one of the most important open questions in all of
science.

— huge practical implications

 Every problem in P isin NP

 Every problem in NP can be solved in exponential

time
T vs. NP

solving NP problems in exponential time

l;'/\O?]u»ol,(.l\m w NP he 4(j~

WV\V\AB N h\‘\L 2@ (V\C) 2“ °‘\C\'

fov Sone SO

NP-hardness & NP-completeness

* Alternative approach to proving problems not in P

— show that they are at least as hard as any problem in
NP

* Rough definition:

— A problem is NP-hard iff it is at least as hard as any
problem in NP

— A problem is NP-complete iff it is both
NP-hard
in NP

P and NP

Ak NP had

L

NP-complete

P< VP

NP-hardness & NP-completeness

* Definition: A problem B is NP-hard iff every
problem A NP satisfies A <, B

* Definition: A problem B is NP-complete iff A
is NP-hard and A eNP

 Even though we seem to have lots of hard
problems in NP it is not obvious that such super-
hard problems even exist!

Cook-Levin Theorem

e Theorem (Cook 1971\, i {3):
@NP—complete.)T
* Recall
— CNF formula
(X{V=aX3V Xg) A (X V=X,V X3) A (X V=X, Vv Xg)
— If there is some assignment of O’s and 1's to the

variables that makes it true then we say the formula is
satisfiable

— 3-SAT: Given a 3-CNF formula F, is it satisfiable?

implications of the Cook-Levin theorem?

* There is at least one interesting super-hard
problem in NP

* |s that such a big deal?

* Yes, a jumping off point.

— There are lots of other problems that can be
solved if we had a polynomial-time algorithm
for 3-SAT

— Many of these problems are exactly as hard as
3-SAT

A useful property of polynomial-time reductions

* Theorem: IfA<,B and B<,C thenA<,C

* Proof idea: (Using S%,)

— Compose the reduction f from A to B with the reduction
g from B to C to get a new reduction h(x)=g(f(x)) from A
to C.

— The general case is similar and uses the fact that the
composition of two polynomials is also a polynomial

A useful property of polynomial-time reductions

* Theorem: IfA<,B and B<,C thenA<,C

* Proof idea: 7 (p(A)

\> G Zo«)

/

Cook-Levin theorem & implications

heorem (Cook 1971, Levin 1973):
3-SAT is NP-complete (for proof see CSE 431)

* Corollary: B is NP-hard < 3-SAT <, B

(or A <, B for any NP-complete problem A)

£ 2-SAT &
. f\‘;ﬁ/\j —p
— IfBis ry problem in NP polynomial-
time reduces to B, in particular 3-SAT does since it is in
NP

— For any problem A in NP, A <, 3-SAT and so if
therefore B is NP-hard if 3-SAT <,B

):3-SAT splndependent-Set’] P(é NP
A € 3-SAT 2 fud-Set

n the/same clatkse\jf F,

corres literals x\and —x (on vige versa) for
riable X. (red\egges)

— Set k= /?
— Clearly polynomial-time =
/L /0/70

o /
\0/’()

,(i'.—,)(x: XB:y

3-SAT <; Independent-Set X, = o
FE 2> (6,k) m =" Cluapes w &
kK = W

l) /

3-SAT <plndependent-Set

e Correctness:

— If F is satisfiable then there is some assignment that satisfies at
least one literal in each clause.

— Consider the set U in G corresponding to the first satisfied literal in
each clause.
|U|=m
Since U has only one vertex per clause, no two vertices in U are
joined by green edges

Since a truth assignment never satisfies both x and —x, U doesn’t
contain vertices labeled both x and —x and so no vertices in U are
joined by red edges

Therefore G has an independent set, U, of size at least m
— Therefore (G,m) is a YES for independent set.

3-SAT <; Independent-Set

1 0O 1 1 0 1 1 0 1

Given assignment X;=X,=X;=X,=1,
U Is as circled

3-SAT <plndependent-Set

e Correctness continued:

— If (G,m) is a YES for Independent-Set then there is a set
U of m vertices in G containing no edge.

Therefore U has precisely one vertex per clause because
of the green edges in G.

Because of the red edges in G, U does not contain
vertices labeled both x and —x

Build a truth assignment A that makes all literals labeling
vertices in U true and for any variable not labeling a
vertex in U, assigns its truth value arbitrarily.

By construction, A satisfies F
— Therefore F is a YES for 3-SAT.

3-SAT <;Independent-Set

e

3-SAT <plndependent-Set

0 1 O ? 1 0 ? 1 O

X2
X ‘9 -
4‘ .

Given U, satisfying assignment
IS X;=X3=X,=0, X,=0 or 1

Independent-Set is NP-complete

 We just showed that Independent-Set is NP-hard
and we already knew Independent-Set is in NP.

* Corollary: Clique is NP-complete

— We showed already that
Independent-Set <, Clique and Clique is in NP.

