CSE 421: Algorithms

Winter 2014

Lecture 23: P, NP, and reductions

Reading:

Sections 8.3-8.7

polynomial time

Define P (polynomial-time) to be

- the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
decision problems: output YES/NO

beyond P ?

- There are many other natural, practical problems for which we don't know any polynomial-time algorithms
- For example: decisionTSP
- Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k?

satisfiability
- Boolean variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ - taking values in $\{0,1\}$. $0=$ false, $1=$ true
- Literals

$$
-x_{i} \text { or } \neg x_{i} \text { for } i=1, \ldots, n
$$

- Clause
- a logical OR of one or more literals

$$
- \text { egg. }\left(x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}\right)
$$

- CNF formula $C_{1} \cap C_{2} \wedge \ldots \cap C_{m}$ - a logical AND of a bunch of clauses
- k-CNF formula $k=3$

$$
c_{i}=\left(x_{1 \neg} \vee x_{3} \vee \neg x_{2}\right)
$$

- All clauses have exactly k variables

$$
\left(x_{3} \vee \neg x_{4} \cup x_{7}\right) \wedge\left(x_{2} \vee x_{1}\right) \wedge\left(x_{12} \vee \neg x_{1}\right)
$$

satisfiabilitv $(a \cap a \rightarrow b) \rightarrow b$

$$
p \rightarrow q \text { fp vi } \quad x_{1}=x_{2}=x_{3}=1, x_{4}=0
$$

- CNF formula example

$$
\left.\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4}\right) \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}^{\prime}\right)
$$

- If there is some assignment of $\widehat{0 \text { 's and 1's }}$ to the variables that makes it true then we say the formula is satisfiable
- the one above is, the following isn't $\quad X_{3}=0$ $\left.x-\mathbf{x}_{1} \wedge\left(\overparen{\neg \mathbf{x}_{1}}\right) \mathbf{x}_{\mathbf{2}}\right) \wedge\left(\overline{\neg \mathbf{x}_{2}} \vee \mathbf{x}_{3}\right) \wedge \neg \mathbf{x}_{3}\left\ulcorner X_{2}=0\right.$
- 3-SAT: Given a CNF formula F with $3 X_{1}=0$ variables per clause, is it satisfiable?

common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find
- egg.

$$
\begin{aligned}
& (G, k) \text { is the a tour of } \\
& \text { weight } \leq k \text { ? }
\end{aligned}
$$

-Independent-Set, Clique:
Give me the clique or ind. set
-3-SAT:

$$
\begin{aligned}
& \text { satisfy cessigment } \\
& \mid \text { TAUTOLOGY: Does eng assn satisfy }
\end{aligned}
$$

$N P$ consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate
and
- No certificate can fool your polynomial time verifier into saying YES for a NO instance

more precise definition of $N P$

- A decision problem is in $N P$ iff there is a polynomial time procedure verify(...), and an integer k such that
- for every input x to the problem that is a YES instance there is a certificate t with $\quad|t| \leq|x|^{k}$ such that verify $(x, t)=Y E S$
and
- for every input x to the problem that is a NO instance there does not exist a certificate t with $|t| \leq|x|^{k}$ such that verify $(x, t)=Y E S$

$$
3)
$$

$$
\begin{aligned}
& t=\{3,4,5\} \\
& t=\{1,3,5\}
\end{aligned}
$$

CLIQUE is in $N P$

$x=(G, k)$
$\underset{\text { procedure verify }(\mathbf{x}, \mathbf{t})}{a} \rightarrow$ aa instance
if x is a well-formed representation of a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k},
 and
lis a well-formed representation of a vertex subset \mathbf{U} of \mathbf{V} of size \mathbf{k}, and
U is a clique in G ,
then output "YES"
else output "I'm unconvinced"

$$
\stackrel{(G, k)}{\rightarrow}{ }^{\text {ND instener }} \forall t \text { verify }((G, b), t)
$$

(G, K) is a YES instance
\Leftrightarrow vt st. verify ($(0,41,+1)$ says YES.

keys to showing a problem is in $N P$

- What's the output? (must be YES/NO)
- What must the input look like?
- Which inputs need a YES answer?
- Call such inputs YES inputs/YES instances
- For every given YES input, is there a certificate that would help?
- OK if some inputs need no certificate
- For any given NO input, is there a fake certificate that would trick you?

solving $N P$ problems without hints

The only obvious algorithm for most of these problems is brute force:

- try all possible certificates and check each one to see if it works.
- Exponential time:
2^{n} truth assignments for n variables
n ! possible TSP tours of n vertices
$\binom{\mathbf{n}}{\mathbf{k}}$ possible k element subsets of \mathbf{n} vertices
etc.

what we know

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $P=N P$?
- one of the most important open questions in all of science.
- huge practical implications
- Every problem in P is in NP

- Every problem in NP can be solved in exponential time

solving $N P$ problems in exponential time
Ency problem in NP has ils. running in tine $2^{O\left(n^{c}\right)} 2^{n^{k}}-n^{a}$ for save $c>0$

$$
\begin{gathered}
\text { Thy verity }(x+t) \\
\forall|t| \leq|x|^{k}
\end{gathered}
$$

$A \in N P$ Then A has a verifier verify (x, t)

$$
\begin{aligned}
x \text { a YES inst. } \Rightarrow & \exists|t| \leq|x|^{k} \text { s.t. } \\
& \text { verify }(x, t) \text { accepts. }
\end{aligned}
$$

NP-hardness \& NP-completeness

- Alternative approach to proving problems not in P
- show that they are at least as hard as any problem in NP
- Rough definition:
- A problem is NP-hard iff it is at least as hard as any problem in NP
- A problem is NP-complete iff it is both NP-hard
in NP
P and $N P$
A is NP-hard if $B \leq P A \quad \forall B \in N P$.

NP-hardness \& NP-completeness

- Definition: A problem B is NP-hard iff every problem $A \in N P$ satisfies $A \leq_{p} B$
- Definition: A problem B is NP-complete iff A is NP-hard and $A \in N P$
- Even though we seem to have lots of hard problems in NP it is not obvious that such superhard problems even exist!

Cook-Levin Theorem

- Theorem (Cook 1971, Levin 1973):

3-SAT is NP-complete.

- Recall
- CNF formula

$$
\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)
$$

- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
- 3-SAT: Given a 3-CNF formula F, is it satisfiable?

implications of the Cook-Levin theorem?

- There is at least one interesting super-hard problem in NP
- Is that such a big deal?
- Yes, a jumping off point.
- There are lots of other problems that can be solved if we had a polynomial-time algorithm for 3-SAT
- Many of these problems are exactly as hard as 3-SAT

A useful property of polynomial-time reductions

- Theorem: If $\mathrm{A} \leq_{\mathrm{P}} \mathrm{B}$ and $\mathrm{B} \leq_{\mathrm{P}} \mathrm{C}$ then $\mathrm{A} \leq_{\mathrm{P}} \mathrm{C}$
- Proof idea: (Using \leq_{p}^{1})
- Compose the reduction from A to B with the reduction g from B to C to get a new reduction $h(x)=g(f(x))$ from A to C .
- The general case is similar and uses the fact that the composition of two polynomials is also a polynomial

A useful property of polynomial-time reductions

- Theorem: If $A \leq_{p} B$ and $B \leq_{p} C$ then $A \leq_{p} C$
- Proof idea:

$$
p(x) \quad q(x) \quad q(p(x))
$$

Cook-Levin theorem \& implications

Fheorem (Cook 1971, Levin 1973):
3-SAT is NP-complete (for proof see CSE 431)

- Corollary: B is NP-hard \Leftrightarrow 3-SAT $\leq_{\mathrm{P}} \mathrm{B}$
(or $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ for any NP-complete problem A)
- Proof:

$$
A \leq{ }_{p} 3-S A T \leqslant{ }_{p} B
$$

- If B is NP-hard then every protorem in NP polynomialtime reduces to B, in particular 3-SAT does since it is in NP
- For any problem A in NP, $A \leq_{p} 3-S A T$ and so if $3-S A T \leq_{p} B$ we have $A \leq_{p} B$. therefore B is NP-hard if $3-S A T \leq_{p} B$

$\left[3-S A T \leq_{p}\right.$ Independent-Set $] \quad A \in N P$

$$
A \leq 3-5 A T \leq \text { did }- \text { set }
$$

- A Tricky Reduction:
- mapping CNF/ formula F to a pair <G,k>
- Let m be the number of classes of F
- Create a vertex in \& for each literal in F
- foin two vertices φ, v in G by an edge of
 u and v correspond to literals x and $\neg x$ (or vice versa) for some variable x. (red edges)
- Set k=m
- Clearly polynomial-time

$$
F \xrightarrow{P}(G, k) \quad m={ }^{4} \text { clause in } F
$$

F: $\quad\left({ }_{(}^{\prime} \mathbf{x}_{1} \vee \neg \mathrm{x}_{3} \vee \mathrm{x}_{4}\right) \wedge\left(\mathrm{x}_{2} \vee \neg \mathrm{x}_{4} \vee \mathrm{x}_{3}\right) \wedge\left(\mathrm{x}_{2} \vee \neg \mathrm{x}_{1} \vee \mathrm{x}^{\prime} \mathrm{x}_{3}\right)$

3-SAT \leq_{p} Independent-Set

- Correctness:
- If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
- Consider the set U in G corresponding to the first satisfied literal in each clause.

$$
|\mathrm{U}|=\mathbf{m}
$$

Since U has only one vertex per clause, no two vertices in U are joined by green edges
Since a truth assignment never satisfies both \mathbf{x} and $\neg \mathbf{x}$, \mathbf{U} doesn't contain vertices labeled both \mathbf{x} and $\neg \mathbf{x}$ and so no vertices in U are joined by red edges
Therefore \mathbf{G} has an independent set, \mathbf{U}, of size at least \mathbf{m}

- Therefore (\mathbf{G}, m) is a YES for independent set.

3-SAT $\leq_{\text {p }}$ Independent-Set

$$
\text { F: } \left.\begin{array}{ccc}
1 & 0 & 1 \\
\left(x_{1} \vee \neg x_{3} \vee\right. & 1 & 0 \\
x_{4}
\end{array}\right) \wedge\left(\right.
$$

Given assignment $X_{1}=x_{2}=x_{3}=x_{4}=1$, \mathbf{U} is as circled

3-SAT $\leq_{\text {P }}$ Independent-Set

- Correctness continued:
- If (\mathbf{G}, m) is a YES for Independent-Set then there is a set U of \mathbf{m} vertices in G containing no edge.
Therefore U has precisely one vertex per clause because of the green edges in G.
Because of the red edges in \mathbf{G}, \mathbf{U} does not contain vertices labeled both \mathbf{x} and $\neg \mathbf{x}$
Build a truth assignment A that makes all literals labeling vertices in U true and for any variable not labeling a vertex in U, assigns its truth value arbitrarily.
By construction, A satisfies F
- Therefore F is a YES for 3-SAT.

3-SAT $\leq_{\text {p }}$ Independent-Set

F: $\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$

3-SAT $\leq_{\text {P }}$ Independent-Set

0	1	0	$?$	1	0	$?$	1	0

$F:\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$

Given U, satisfying assignment is $\mathrm{x}_{1}=\mathrm{x}_{3}=\mathrm{x}_{4}=\mathbf{0}, \mathrm{x}_{2}=0$ or 1

Independent-Set is NP-complete

- We just showed that Independent-Set is NP-hard and we already knew Independent-Set is in NP.
- Corollary: Clique is NP-complete
- We showed already that Independent-Set \leq_{p} Clique and Clique is in NP.

