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Winter 2014
Lecture 23: P, NP, and reductions

Reading:

Sections 8.3-8.7



polynomial time

Define 𝑷 (polynomial-time) to be 

– the set of all decision problems solvable by 

algorithms whose worst-case running time is 

bounded by some polynomial in the input size. 



beyond 𝑃?

• There are many other natural, practical problems 

for which we don’t know any polynomial-time 

algorithms

• For example:  decisionTSP

– Given a weighted graph G and an integer k, 

does there exist a tour that visits all vertices in 

G having total weight at most k?



satisfiability

• Boolean variables x1,...,xn

– taking values in {0,1}.  0=false, 1=true

• Literals
– xi or  xi for i=1,...,n

• Clause
– a logical OR of one or more literals

– e.g. (x1 x3  x7  x12)

• CNF formula

– a logical AND of a bunch of clauses

• k-CNF formula
– All clauses have exactly k variables



satisfiability

• CNF formula example
(x1  x3  x4)  ( x2  x4  x3)  ( x2  x1  x3)

• If there is some assignment of 0’s and 1’s 

to the variables that makes it true then we 

say the formula is satisfiable

– the one above is, the following isn’t

– x1 (x1  x2)  (x2  x3)  x3

• 3-SAT: Given a CNF formula F with 3

variables per clause, is it satisfiable?



common property of these problems

• There is a special piece of information, a short 
certificate or proof, that allows you to efficiently 
verify (in polynomial-time) that the YES answer is 
correct.  This certificate might be very hard to find

• e.g.  

– DecisionTSP:

– Independent-Set, Clique:

– 3-SAT:



The complexity class 𝑁𝑃

𝑵𝑷 consists of all decision problems where 

• You can verify the YES answers efficiently (in 

polynomial time) given a short (polynomial-size) 

certificate

and

• No certificate can fool your polynomial time 

verifier into saying YES for a NO instance



more precise definition of 𝑁𝑃

• A decision problem is in 𝑁𝑃 iff there is a 
polynomial time procedure verify(.,.), and an 
integer k such that 

– for every input x to the problem that is a YES
instance there is a certificate t with   |t|  |x|k

such that verify(x,t) = YES

and

– for every input x to the problem that is a NO
instance there does not exist a certificate t with 
|t|  |x|k such that verify(x,t) = YES



CLIQUE is in 𝑁𝑃

procedure verify(x,t)

if x is a well-formed representation of

a graph G = (V, E) and an integer k, 

and 

t is a well-formed representation of a vertex 
subset U of V of size k, 

and 

U is a clique in G, 

then output "YES"

else output "I'm unconvinced" 



is it correct?



keys to showing a problem is in 𝑁𝑃

• What's the output?  (must be YES/NO)

• What must the input look like?  

• Which inputs need a YES answer?

– Call such inputs YES inputs/YES instances

• For every given YES input, is there a certificate 
that would help?

– OK if some inputs need no certificate

• For any given NO input, is there a fake certificate 
that would trick you?



solving 𝑁𝑃 problems without hints

The only obvious algorithm for most of these 

problems is brute force:

– try all possible certificates and check each one to see if 

it works.

– Exponential time:

2n truth assignments for n variables

n! possible TSP tours of n vertices

possible k element subsets of n vertices

etc.

n

k

 
 
 



what we know

• Nobody knows if all problems in NP can be done in 

polynomial time, i.e. does P = NP ?

– one of the most important open questions in all of 

science.

– huge practical implications

• Every problem in P is in NP

• Every problem in NP can be solved in exponential 

time



solving 𝑁𝑃 problems in exponential time



NP-hardness & NP-completeness

• Alternative approach to proving problems not in P

– show that they are at least as hard as any problem in 
NP

• Rough definition:

– A problem is NP-hard iff it is at least as hard as any 
problem in NP

– A problem is NP-complete iff it is both

NP-hard

in NP



P and NP

NP

P

NP-complete

NP-hard



NP-hardness & NP-completeness

• Definition: A problem B is NP-hard iff every 
problem A𝑵𝑷 satisfies A P B

• Definition: A problem B is NP-complete iff A
is NP-hard and A 𝑵𝑷

• Even though we seem to have lots of hard 
problems in 𝑵𝑷 it is not obvious that such super-
hard problems even exist!



Cook-Levin Theorem

• Theorem (Cook 1971, Levin 1973): 

3-SAT is NP-complete.

• Recall

– CNF formula

(x1  x3  x4)  ( x2  x4  x3)  ( x2  x1  x3)

– If there is some assignment of 0’s and 1’s to the 

variables that makes it true then we say the formula is 

satisfiable

– 3-SAT: Given a 3-CNF formula F, is it satisfiable?



implications of the Cook-Levin theorem?

• There is at least one interesting super-hard 
problem in NP

• Is that such a big deal?

• Yes, a jumping off point.

– There are lots of other problems that can be 
solved if we had a polynomial-time algorithm 
for 3-SAT

– Many of these problems are exactly as hard as 
3-SAT



A useful property of polynomial-time reductions

• Theorem: If A P B and B P C then A P C  

• Proof idea: (Using )

– Compose the reduction f from A to B with the reduction 
g from B to C to get a new reduction h(x)=g(f(x)) from A
to C.

– The general case is similar and uses the fact that the 
composition of two polynomials is also a polynomial

1

P



A useful property of polynomial-time reductions

• Theorem: If A P B and B P C then A P C  

• Proof idea:



Cook-Levin theorem & implications

• Theorem (Cook 1971, Levin 1973):

3-SAT is NP-complete (for proof see CSE 431)

• Corollary: B is NP-hard  3-SAT P B
(or A P B for any NP-complete problem A)

• Proof:  
– If B is NP-hard then every problem in NP polynomial-

time reduces to B, in particular 3-SAT does since it is in
NP

– For any problem A in NP, A P 3-SAT and so if

3-SAT P B we have A P B.

therefore B is NP-hard if 3-SAT PB



3-SAT P Independent-Set

• A Tricky Reduction:

– mapping CNF formula F to a pair <G,k>

– Let m be the number of clauses of F

– Create a vertex in G for each literal in F

– Join two vertices u, v in G by an edge iff

u and v correspond to literals in the same clause of F, 
(green edges) or

u and v correspond to literals x and x (or vice versa) for 
some variable x.  (red edges)

– Set k=m

– Clearly polynomial-time



3-SAT P Independent-Set

F:   (x1  x3  x4)  ( x2  x4  x3)  ( x2  x1  x3)

x1

x3 x4

x1

x2

x2

x4 x3x3



3-SAT PIndependent-Set

• Correctness:

– If F is satisfiable then there is some assignment that satisfies at 

least one literal in each clause.  

– Consider the set U in G corresponding to the first satisfied literal in 

each clause.  

|U|=m

Since U has only one vertex per clause, no two vertices in U are 
joined by green edges

Since a truth assignment never satisfies both x and x, U doesn’t 
contain vertices labeled both x and x and so no vertices in U are
joined by red edges

Therefore G has an independent set, U, of size at least m

– Therefore (G,m) is a YES for independent set.



3-SAT P Independent-Set

F:   (x1  x3  x4)  ( x2  x4  x3)  ( x2  x1  x3)

x1

x3 x4

x1

x2

x2

x4 x3x3

1       0      1         1      0      1         1       0       1

Given assignment x1=x2=x3=x4=1,

U is as circled

U



3-SAT PIndependent-Set

• Correctness continued:
– If (G,m) is a YES for Independent-Set then there is a set 

U of m vertices in G containing no edge.

Therefore U has precisely one vertex per clause because 
of the green edges in G.
Because of the red edges in G, U does not contain 
vertices labeled both x and x
Build a truth assignment A that makes all literals labeling 
vertices in U true and for any variable not labeling a 
vertex in U, assigns its truth value arbitrarily.
By construction, A satisfies F

– Therefore F is a YES for 3-SAT.



3-SAT PIndependent-Set

F:   (x1  x3  x4)  ( x2  x4  x3)  ( x2  x1  x3)

x1

x3 x4

x1

x2

x2

x4 x3x3



3-SAT PIndependent-Set

F:   (x1  x3  x4)  ( x2  x4  x3)  ( x2  x1  x3)

x1

x3 x4

x1

x2

x2

x4 x3x3

Given U, satisfying assignment

is x1=x3=x4=0, x2=0 or 1

0       1     0         ?       1      0         ?       1      0



Independent-Set is NP-complete

• We just showed that Independent-Set is NP-hard 

and we already knew Independent-Set is in NP.

• Corollary: Clique is NP-complete

– We showed already that                          

Independent-Set P Clique and Clique is in NP.


