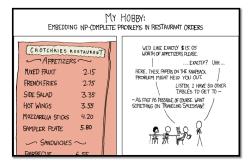
CSE 421: Algorithms

Winter 2014

Lecture 23: P, NP, and reductions

Reading:

Sections 8.3-8.7



beyond *P*?

- There are many other natural, practical problems for which we don't know any polynomial-time algorithms
- For example: decisionTSP
 - Given a weighted graph G and an integer k,
 does there exist a tour that visits all vertices in
 G having total weight at most k?

polynomial time

Define P (polynomial-time) to be

 the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

satisfiability

- Boolean variables x₁,...,x_n
 - taking values in {0,1}. 0=false, 1=true
- Literals
 - x_i or $\neg x_i$ for i=1,...,n
- Clause
 - a logical OR of one or more literals
 - $e.g. (X_1 \lor \neg X_3 \lor X_7 \lor X_{12})$
- CNF formula
 - a logical AND of a bunch of clauses
- k-CNF formula
 - All clauses have exactly k variables

satisfiability

- CNF formula example
 (x₁ ∨ ¬x₃ ∨ x₄) ∧ (x₂ ∨ ¬x₄ ∨ x₃) ∧ (x₂ ∨ ¬x₁ ∨ x₃)
- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - the one above is, the following isn't

$$- \mathbf{X_1} \wedge (\neg \mathbf{X_1} \vee \mathbf{X_2}) \wedge (\neg \mathbf{X_2} \vee \mathbf{X_3}) \wedge \neg \mathbf{X_3}$$

 3-SAT: Given a CNF formula F with 3 variables per clause, is it satisfiable?

The complexity class *NP*

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

and

 No certificate can fool your polynomial time verifier into saying YES for a NO instance

common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find
- e.g.
 - DecisionTSP:
 - Independent-Set, Clique:
 - 3-SAT:

more precise definition of NP

- A decision problem is in NP iff there is a polynomial time procedure verify(.,.), and an integer k such that
 - for every input x to the problem that is a YES instance there is a certificate t with $|t| \le |x|^k$ such that verify(x,t) = YES

and

- for every input x to the problem that is a NO instance there does not exist a certificate t with |t| ≤ |x|^k such that verify(x,t) = YES

CLIQUE is in NP

```
procedure verify(x,t)

if x is a well-formed representation of
    a graph G = (V, E) and an integer k,
    and
    t is a well-formed representation of a vertex
    subset U of V of size k,
    and
    U is a clique in G,
    then output "YES"
    else output "I'm unconvinced"
```

keys to showing a problem is in NP

- What's the output? (must be YES/NO)
- · What must the input look like?
- Which inputs need a YES answer?
 - Call such inputs YES inputs/YES instances
- For every given YES input, is there a certificate that would help?
 - OK if some inputs need no certificate
- For any given NO input, is there a fake certificate that would trick you?

is it correct?

solving NP problems without hints

The only **obvious algorithm** for most of these problems is **brute force**:

- try all possible certificates and check each one to see if it works.
- Exponential time:

2ⁿ truth assignments for n variables

n! possible TSP tours of **n** vertices

possible **k** element subsets of **n** vertices

etc.

what we know

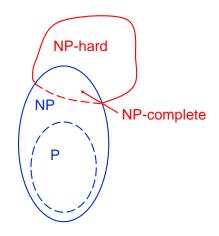
- Nobody knows if all problems in NP can be done in polynomial time, i.e. does P = NP?
 - one of the most important open questions in all of science.
 - huge practical implications
- Every problem in P is in NP
- Every problem in NP can be solved in exponential time

NP-hardness & NP-completeness

- Alternative approach to proving problems not in P
 - show that they are at least as hard as any problem in NP
- Rough definition:
 - A problem is NP-hard iff it is at least as hard as any problem in NP
 - A problem is NP-complete iff it is both NP-hard in NP

solving NP problems in exponential time

P and NP



NP-hardness & NP-completeness

- Definition: A problem B is NP-hard iff every problem A∈NP satisfies A ≤_P B
- Definition: A problem B is NP-complete iff A is NP-hard and A ∈ NP
- Even though we seem to have lots of hard problems in NP it is not obvious that such superhard problems even exist!

implications of the Cook-Levin theorem?

- There is at least one interesting super-hard problem in NP
- Is that such a big deal?
- · Yes, a jumping off point.
 - There are lots of other problems that can be solved if we had a polynomial-time algorithm for 3-SAT
 - Many of these problems are exactly as hard as 3-SAT

Cook-Levin Theorem

- Theorem (Cook 1971, Levin 1973):
 3-SAT is NP-complete.
- Recall
 - CNF formula

```
(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)
```

- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
- 3-SAT: Given a 3-CNF formula F, is it satisfiable?

A useful property of polynomial-time reductions

- Theorem: If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$
- Proof idea: (Using ≤¹_p)
 - Compose the reduction f from A to B with the reduction g from B to C to get a new reduction h(x)=g(f(x)) from A to C.
 - The general case is similar and uses the fact that the composition of two polynomials is also a polynomial

A useful property of polynomial-time reductions

- Theorem: If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$
- · Proof idea:

3-SAT ≤_p Independent-Set

- A Tricky Reduction:
 - mapping CNF formula F to a pair <G,k>
 - Let m be the number of clauses of F
 - Create a vertex in G for each literal in F
 - Join two vertices u, v in G by an edge iff

 \boldsymbol{u} and \boldsymbol{v} correspond to literals in the same clause of $\boldsymbol{F}\!\!$, (green edges) or

- **u** and **v** correspond to literals x and $\neg x$ (or vice versa) for some variable x. (red edges)
- Set k=m
- Clearly polynomial-time

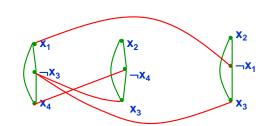
Cook-Levin theorem & implications

- Theorem (Cook 1971, Levin 1973):
 3-SAT is NP-complete (for proof see CSE 431)
- Corollary: B is NP-hard

 ⇒ 3-SAT ≤_p B
 (or A ≤_p B for any NP-complete problem A)
- Proof:
 - If B is NP-hard then every problem in NP polynomialtime reduces to B, in particular 3-SAT does since it is in NP
 - For any problem A in NP, A ≤_P 3-SAT and so if
 3-SAT ≤_P B we have A ≤_P B.
 therefore B is NP-hard if 3-SAT ≤_PB

3-SAT ≤_p Independent-Set

F:
$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$



3-SAT ≤_PIndependent-Set

· Correctness:

- If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
- Consider the set U in G corresponding to the first satisfied literal in each clause.

|U|=m

Since **U** has only one vertex per clause, no two vertices in **U** are joined by green edges

Since a truth assignment never satisfies both x and $\neg x$, U doesn't contain vertices labeled both x and $\neg x$ and so no vertices in U are joined by red edges

Therefore **G** has an independent set, **U**, of size at least **m**

- Therefore (G,m) is a YES for independent set.

3-SAT ≤_pIndependent-Set

Correctness continued:

 If (G,m) is a YES for Independent-Set then there is a set U of m vertices in G containing no edge.

Therefore ${\bf U}$ has precisely one vertex per clause because of the green edges in ${\bf G}$.

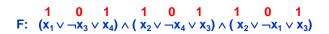
Because of the red edges in G, U does not contain vertices labeled both x and ¬x

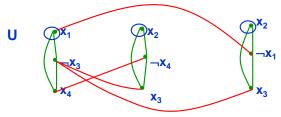
Build a truth assignment A that makes all literals labeling vertices in U true and for any variable not labeling a vertex in U, assigns its truth value arbitrarily.

By construction, A satisfies F

Therefore F is a YES for 3-SAT.

3-SAT ≤_p Independent-Set

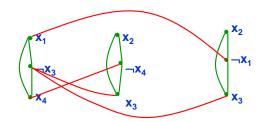




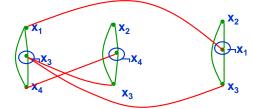
Given assignment $x_1=x_2=x_3=x_4=1$, U is as circled

3-SAT ≤_pIndependent-Set

F:
$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$



3-SAT ≤_PIndependent-Set



Given U, satisfying assignment is $x_1=x_3=x_4=0$, $x_2=0$ or 1

Independent-Set is NP-complete

- We just showed that Independent-Set is NP-hard and we already knew Independent-Set is in NP.
- Corollary: Clique is NP-complete
 - We showed already that
 Independent-Set ≤_P Clique and Clique is in NP.