CSE 421.: Algorithms

polynomial time

Winter 2014
Lecture 23: P, NP, and reductions
Reading:
Sections 8.3-8.7 MY HoBgy:
EMBEDDING NP-(OMPLETE PROBLENS IN RESTAURANT ORDERS
WED LIKE EXACTLY §15. 05
WORTH OF AVPETIZERS, PLEASE.
—APPENZERS — _ERCY? UK.
MIED FRUIT 2.5 HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 LISTEN, T HAVE §ix OTHER
SIDE SALAD 235 \ TABLES T0 GET T0 =
' — A FAST P POSSIBLE, (F (OURSE- WANT
HoT WiNGS 3.55 SONETHING ON TRAVELING SALESYAN? /
MozzaREup SIS 420 \
SAMPLER PATE ~ 5:80 % o %’b %
—— SANDWICHES ~— !
beyond P?

* There are many other natural, practical problems

for which we don’t know any polynomial-time
algorithms

* For example: decisionTSP
— Given a weighted graph G and an integer k,

does there exist a tour that visits all vertices in

G having total weight at most k?

Define P (polynomial-time) to be

— the set of all decision problems solvable by
algorithms whose worst-case running time is

bounded by some polynomial in the input size.

satisfiability

* Boolean variables Xx4,...,X,
— taking values in {0,1}. O=false, 1=true

* Literals
— xor = x fori=1,..,n
* Clause
— a logical OR of one or more literals
— €.8. (Xg vV X3V X7 V Xg9)
* CNF formula
— alogical AND of a bunch of clauses

* k-CNF formula
— All clauses have exactly k variables

3/5/2014

satisfiability

* CNF formula example
(X VX3V Xg) A (XoV —Xg V X3) A (X V —Xq V X3)
* If there is some assighment of O's and 1's
to the variables that makes it true then we
say the formula is satisfiable
— the one above is, the following isn’t
= X4 A (5Xg V X5) A (—Xg V X3) A —Xg
* 3-SAT: Given a CNF formula F with 3
variables per clause, is it satisfiable?

The complexity class NP

common property of these problems

NP consists of all decision problems where

* You can verify the YES answers efficiently (in
polynomial time) given a short (polynomial-size)
certificate

and

* No certificate can fool your polynomial time
verifier into saying YES for a NO instance

* There is a special piece of information, a short
certificate or proof, that allows you to efficiently
verify (in polynomial-time) that the YES answer is
correct. This certificate might be very hard to find

* e.g.
— DecisionTSP:

— Independent-Set, Clique:

— 3-SAT:

more precise definition of NP

* A decision problem is in NP iff there is a
polynomial time procedure verify(.,.), and an
integer k such that
— for every input x to the problem that is a YES
instance there is a certificate t with [t] < x|
such that verify(x,t) = YES

and

— for every input x to the problem that is a NO

instance there does not exist a certificate t with
|t] < |x]*such that verify(x,t) = YES

3/5/2014

CLIQUE is in NP

procedure verify(x,t)
if X is a well-formed representation of
a graph G = (V, E) and an integer k,
and

t is a well-formed representation of a vertex
subset U of V of size k,

and
Uis aclique in G,
then output "YES"
else output "I'm unconvinced"

keys to showing a problem is in NP

is it correct?

* What's the output? (must be YES/NO)
* What must the input look like?
* Which inputs need a YES answer?
— Call such inputs YES inputs/YES instances

* For every given YES input, is there a certificate
that would help?

— OK if some inputs need no certificate

* For any given NO input, is there a fake certificate
that would trick you?

solving NP problems without hints

The only obvious algorithm for most of these
problems is brute force:

— try all possible certificates and check each one to see if
it works.

— Exponential time:
2" truth assignments for n variables
n! possible TSP tours of n vertices

n
[k] possible k element subsets of n vertices

etc.

3/5/2014

what we know

* Nobody knows if all problems in NP can be done in
polynomial time, i.e. does P = NP ?

— one of the most important open questions in all of
science.

— huge practical implications

* Every problem in P is in NP

* Every problem in NP can be solved in exponential
time

NP-hardness & NP-completeness

solving NP problems in exponential time

» Alternative approach to proving problems not in P

— show that they are at least as hard as any problem in
NP

* Rough definition:
— A problem is NP-hard iff it is at least as hard as any
problem in NP
— A problem is NP-complete iff it is both
NP-hard
in NP

P and NP

NP-complete

3/5/2014

NP-hardness & NP-completeness

3/5/2014

Cook-Levin Theorem

* Definition: A problem B is NP-hard iff every
problem Ae NP satisfies A <, B

* Definition: A problem B is NP-complete iff A
is NP-hard and A NP

* Even though we seem to have lots of hard
problems in NP it is not obvious that such super-
hard problems even exist!

implications of the Cook-Levin theorem?

* Theorem (Cook 1971, Levin 1973):
3-SAT is NP-complete.

* Recall
— CNF formula
(X1 VX3 V Xg) A (X V=X, V X3) A (XoV —Xq V X3)
— If there is some assignment of O’s and 1’s to the
variables that makes it true then we say the formula is
satisfiable

— 3-SAT: Given a 3-CNF formula F, is it satisfiable?

A useful property of polynomial-time reductions

* There is at least one interesting super-hard
problem in NP

* Is that such a big deal?

* Yes, a jumping off point.
— There are lots of other problems that can be

solved if we had a polynomial-time algorithm
for 3-SAT

— Many of these problems are exactly as hard as
3-SAT

* Theorem: If A<,B and B<,C thenA<,C

* Proof idea: (Using <)

— Compose the reduction f from A to B with the reduction
g from B to C to get a new reduction h(x)=g(f(x)) from A
to C.

— The general case is similar and uses the fact that the
composition of two polynomials is also a polynomial

A useful property of polynomial-time reductions

* Theorem: If A<;B and B<,C thenA<,C

* Proof idea:

3-SAT <; Independent-Set

Cook-Levin theorem & implications

* A Tricky Reduction:
— mapping CNF formula F to a pair <G,k>
— Let m be the number of clauses of F
— Create a vertex in G for each literal in F
— Join two vertices u, vin G by an edge iff

u and v correspond to literals in the same clause of F,
(green edges) or

u and v correspond to literals x and —x (or vice versa) for
some variable x. (red edges)

— Set k=m
— Clearly polynomial-time

* Theorem (Cook 1971, Levin 1973):
3-SAT is NP-complete (for proof see CSE 431)

» Corollary: B is NP-hard < 3-SAT <, B

(or A <, B for any NP-complete problem A)

* Proof:

— If B is NP-hard then every problem in NP polynomial-
time reduces to B, in particular 3-SAT does since it is in
NP

— For any problem A in NP, A <, 3-SAT and so if
3-SAT < B we have A <; B.
therefore B is NP-hard if 3-SAT <,B

3-SAT <, Independent-Set

F: (Xgv=Xg Vv Xg) A (XoV=X4 v X3) A (Xo vV —X; V X3)

X2

—Xy

L~

M=

4 X3

3/5/2014

3-SAT <pIndependent-Set

3/5/2014

3-SAT <, Independent-Set

* Correctness:

— If Fis satisfiable then there is some assignment that satisfies at
least one literal in each clause.

— Consider the set U in G corresponding to the first satisfied literal in
each clause.
[Ul=m
Since U has only one vertex per clause, no two vertices in U are
joined by green edges

Since a truth assignment never satisfies both x and —x, U doesn’t
contain vertices labeled both x and —x and so no vertices in U are
joined by red edges

Therefore G has an independent set, U, of size at least m
— Therefore (G,m) is a YES for independent set.

3-SAT <;Independent-Set

1 0 1 1 0 1 1 0 1
F: (X V=XV X)) A (XV =X,V X3) A (XyV =X; V Xg)

U
Given assignment X;=X,=X;=X,=1,
U is as circled
3-SAT <pIndependent-Set

* Correctness continued:

— If (G,m) is a YES for Independent-Set then there is a set
U of m vertices in G containing no edge.
Therefore U has precisely one vertex per clause because
of the green edges in G.
Because of the red edges in G, U does not contain
vertices labeled both x and —x

Build a truth assignment A that makes all literals labeling
vertices in U true and for any variable not labeling a
vertex in U, assigns its truth value arbitrarily.

By construction, A satisfies F

— Therefore F is a YES for 3-SAT.

F: (Xgv=Xg Vv Xg) A (XoV=X4 v X3) A (Xo vV —X; V X3)

44 \,

3-SAT <pIndependent-Set

0 1 0 ? 1 0 ? 1 0
F: (XgVaX3V Xg) A (XoV =X4 V X3) A ((XoV —=Xq V X3)

Given U, satisfying assignment
IS X;=X3=X,=0, X,=0 or 1

3/5/2014

Independent-Set is NP-complete

* We just showed that Independent-Set is NP-hard
and we already knew Independent-Set is in NP.

* Corollary: Clique is NP-complete

— We showed already that
Independent-Set <, Clique and Clique is in NP.

