CSE 421: Algorithms

Winter 2014

Lecture 22: P, NP, and reductions

Reading:

Sections 8.1-8.3

computational complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Recall:
 - worst-case running time of an algorithm
 max # steps algorithm takes on any input of size n

relative complexity of problems

Need a notion that allows us to compare the complexity of problems.

Want to make statements of the form:

"If we could solve problem **B** in polynomial time then we can solve problem **A** in polynomial time"

"Problem **B** is at least as hard as problem **A**"

polynomial-time reduction

- A ≤_P B if there is an algorithm for A using a 'black box' (subroutine) that solves B that
 - Uses only a polynomial number of steps
 - Makes only a polynomial number of calls to a subroutine for B
- Thus, poly time algorithm for ${\bf B}$ implies poly time algorithm for ${\bf A}$
 - Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!
- If you can prove there is no fast algorithm for A, then that proves there is no fast algorithm for B

a math joke

An engineer

- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.
- · A mathematician
 - is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
 - he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, "I've reduced this to an already solved problem."

special kind of poly-time reduction

- We will always use a restricted form of polynomialtime reduction often called a "Karp" or many-one reduction
- A ≤¹_P B if and only if there is an algorithm for A given a black box solving B that on input x
 - Runs for polynomial time computing an input f(x)
 - Makes one call to the black box for B
 - Returns the answer that the black box gave

We say that the function **f** is the reduction.

reductions by simple equivalence

- Show: Independent-Set ≤_p Clique
- Independent-Set:

Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge?

• Clique:

Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that every pair of vertices in U is joined by an edge?

Independent-Set ≤_P Clique

- Given (G,k) as input to Independent-Set where G=(V,E)
- Transform to (G',k) where G'=(V,E') has the same vertices as G but E' consists of precisely those edges that are not edges of G
- U is an independent set in G
 U is a clique in G'

more reductions

- Show: Independent Set ≤_p Vertex-Cover
- Vertex-Cover:
 - Given an undirected graph G=(V,E) and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G)?
- Independent-Set:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge?

reduction idea

- Claim: In a graph G=(V,E), S is an independent set iff V-S is a vertex cover
- Proof:
 - ⇒ Let S be an independent set in G Then S contains at most one endpoint of each edge of G At least one endpoint must be in V-S V-S is a vertex cover
 - Let W=V-S be a vertex cover of G
 - Then **S** does not contain both endpoints of any edge (else **W** would miss that edge)
 - S is an independent set

reduction

- Map (**G**,**k**) to (**G**,**n**-**k**)
 - Previous lemma proves correctness
- · Clearly polynomial time
- We also get that
 - Vertex-Cover ≤_P Independent Set

reducing a special case to a general case

- Show: Vertex-Cover ≤_P Set-Cover
- Vertex-Cover:
 - Given an undirected graph G=(V,E) and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G)?
- Set-Cover:
 - Given a set U of n elements, a collection S₁,..., S_m of subsets of U, and an integer k, does there exist a collection of at most k sets whose union is equal to U?

the simple reduction

- Transformation f maps
 - (G=(V,E), k) to $(U, S_1,...,S_m, k')$
 - U ← E
 - For each vertex $v\!\in\! V$ create a set \boldsymbol{S}_v containing all edges that touch v
 - k'←k
- Reduction f is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer.

proof of correctness

Two directions:

- If the answer to Vertex-Cover on (G,k) is YES then the answer for Set-Cover on f(G,k) is YES
- If the answer to Set-Cover on f(G,k) is YES then the answer for Vertex-Cover on (G,k) is YES

decision problems

- Computational complexity usually analyzed using decision problems
 - answer is just **1** or **0** (yes or no).
- Why?
 - much simpler to deal with
 - deciding whether G has a path from s to t, is certainly no harder than *finding* a path from s to t in G, so a lower bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder.

polynomial time

Define *P* (polynomial-time) to be

 the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

beyond **P**?

- There are many other natural, practical problems for which we don't know any polynomial-time algorithms
- For example: decisionTSP
 - Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k?

satisfiability

- Boolean variables x₁,...,x_n

 taking values in {0,1}. 0=false, 1=true
- Literals
 - x_I or ¬ x_I for i=1,...,n
- Clause
 - a logical OR of one or more literals
 - $\text{ e.g. } (\mathbf{X_1} \lor \neg \mathbf{X_3} \lor \mathbf{X_7} \lor \mathbf{X_{12}})$
- CNF formula
 - a logical AND of a bunch of clauses
- k-CNF formula
 - All clauses have exactly k variables

satisfiability

- CNF formula example $(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$
- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - the one above is, the following isn't
 - $\operatorname{X}_{\operatorname{1}} \land (\neg \operatorname{X}_{\operatorname{1}} \lor \operatorname{X}_{\operatorname{2}}) \land (\neg \operatorname{X}_{\operatorname{2}} \lor \operatorname{X}_{\operatorname{3}}) \land \neg \operatorname{X}_{\operatorname{3}}$
- 3-SAT: Given a CNF formula F with 3 variables per clause, is it satisfiable?

common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find
- e.g.
 - DecisionTSP: the tour itself,
 - Independent-Set, Clique: the set U
 - 3-SAT: an assignment that makes F true.

The complexity class *NP*

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

and

 No certificate can fool your polynomial time verifier into saying YES for a NO instance more precise definition of NP

- A decision problem is in NP iff there is a polynomial time procedure verify(.,.), and an integer k such that
 - for every input x to the problem that is a YES instance there is a certificate t with $|t| \le |x|^k$ such that verify(x,t) = YES

and

- for every input x to the problem that is a NO instance there does not exist a certificate t with $|t| \le |x|^k$ such that verify(x,t) = YES

CLIQUE is in NP

```
procedure verify(x,t)
if x is a well-formed representation of
        a graph G = (V, E) and an integer k,
        and
        t is a well-formed representation of a vertex
        subset U of V of size k,
        and
        U is a clique in G,
        then output "YES"
        else output "I'm unconvinced"
```

is it correct?

keys to showing a problem is in NP

- What's the output? (must be YES/NO)
- · What must the input look like?
- Which inputs need a YES answer?
 Call such inputs YES inputs/YES instances
- For every given **YES** input, is there a certificate that would help?
 - OK if some inputs need no certificate
- For any given NO input, is there a fake certificate that would trick you?

solving NP problems without hints

The only **obvious algorithm** for most of these problems is **brute force**:

- try all possible certificates and check each one to see if it works.
- Exponential time:
 - 2ⁿ truth assignments for n variables
 - n! possible TSP tours of n vertices
 - possible **k** element subsets of **n** vertices
 - etc.

what we know

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does P = NP ?
 - one of the most important open questions in all of science.
 - huge practical implications
- Every problem in P is in NP
- Every problem in NP is in exponential time