
3/3/2014

1

CSE 421: Algorithms

Winter 2014
Lecture 22: P, NP, and reductions

Reading:

Sections 8.1-8.3

computational complexity

• Classify problems according to the amount of

computational resources used by the best

algorithms that solve them

• Recall:

– worst-case running time of an algorithm

max # steps algorithm takes on any input of size n

relative complexity of problems

Need a notion that allows us to compare the
complexity of problems.

Want to make statements of the form:

 “If we could solve problem B in polynomial time then we
can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

polynomial-time reduction

• A P

B if there is an algorithm for A using a ‘black box’

(subroutine) that solves B that
– Uses only a polynomial number of steps

– Makes only a polynomial number of calls to a subroutine for B

• Thus, poly time algorithm for B implies poly time algorithm
for A
– Not only is the number of calls polynomial but the size of the

inputs on which the calls are made is polynomial!

• If you can prove there is no fast algorithm for A, then that
proves there is no fast algorithm for B

3/3/2014

2

a math joke

• An engineer

– is placed in a kitchen with an empty kettle on the table and told to
boil water; she fills the kettle with water, puts it on the stove, turns
on the gas and boils water.

– she is next confronted with a kettle full of water sitting on the
counter and told to boil water; she puts it on the stove, turns on
the gas and boils water.

• A mathematician

– is placed in a kitchen with an empty kettle on the table and told to
boil water; he fills the kettle with water, puts it on the stove, turns
on the gas and boils water.

– he is next confronted with a kettle full of water sitting on the
counter and told to boil water: he empties the kettle in the sink,
places the empty kettle on the table and says, “I’ve reduced this to
an already solved problem.”

special kind of poly-time reduction

• We will always use a restricted form of polynomial-

time reduction often called a “Karp” or many-one

reduction

• A ≤𝑃
1 B if and only if there is an algorithm for A

given a black box solving B that on input x

– Runs for polynomial time computing an input f(x)

– Makes one call to the black box for B

– Returns the answer that the black box gave

We say that the function f is the reduction.

reductions by simple equivalence

• Show: Independent-Set P Clique

• Independent-Set:
Given a graph G=(V,E) and an integer k, is there a
subset U of V with |U|  k such that no two
vertices in U are joined by an edge?

• Clique:
Given a graph G=(V,E) and an integer k, is there a
subset U of V with |U|  k such that every pair of
vertices in U is joined by an edge?

Independent-Set P Clique

• Given (G,k) as input to Independent-Set where

G=(V,E)

• Transform to (G’,k) where G’=(V,E’) has the same

vertices as G but E’ consists of precisely those

edges that are not edges of G

• U is an independent set in G

  U is a clique in G’

3/3/2014

3

more reductions

• Show: Independent Set P Vertex-Cover

• Vertex-Cover:

– Given an undirected graph G=(V,E) and an integer k is
there a subset W of V of size at most k such that every
edge of G has at least one endpoint in W? (i.e. W
covers all edges of G)?

• Independent-Set:

– Given a graph G=(V,E) and an integer k, is there a subset
U of V with |U|  k such that no two vertices in U are
joined by an edge?

reduction idea

• Claim: In a graph G=(V,E), S is an independent set
iff V-S is a vertex cover

• Proof:

 Let S be an independent set in G

Then S contains at most one endpoint of each edge of G

At least one endpoint must be in V-S

V-S is a vertex cover

 Let W=V-S be a vertex cover of G

Then S does not contain both endpoints of any edge (else
W would miss that edge)

S is an independent set

reduction

• Map (G,k) to (G,n-k)

– Previous lemma proves correctness

• Clearly polynomial time

• We also get that

– Vertex-Cover P Independent Set

reducing a special case to a general case

• Show: Vertex-Cover P Set-Cover

• Vertex-Cover:

– Given an undirected graph G=(V,E) and an integer k is
there a subset W of V of size at most k such that every
edge of G has at least one endpoint in W? (i.e. W
covers all edges of G)?

• Set-Cover:

– Given a set U of n elements, a collection S1,…, Sm of
subsets of U, and an integer k, does there exist a
collection of at most k sets whose union is equal to U?

3/3/2014

4

the simple reduction

• Transformation f maps

(G=(V,E), k) to (U, S1,…,Sm, k’)

– U  E

– For each vertex vV create a set Sv containing all
edges that touch v

– k’k

• Reduction f is clearly polynomial-time to compute

• We need to prove that the resulting algorithm
gives the right answer.

proof of correctness

Two directions:

– If the answer to Vertex-Cover on (G,k) is YES then the

answer for Set-Cover on f(G,k) is YES

– If the answer to Set-Cover on f(G,k) is YES then the

answer for Vertex-Cover on (G,k) is YES

decision problems

• Computational complexity usually analyzed using
decision problems

– answer is just 1 or 0 (yes or no).

• Why?

– much simpler to deal with

– deciding whether G has a path from s to t, is certainly
no harder than finding a path from s to t in G, so a lower
bound on deciding is also a lower bound on finding

– Less important, but if you have a good decider, you can
often use it to get a good finder.

polynomial time

Define 𝑷 (polynomial-time) to be

– the set of all decision problems solvable by

algorithms whose worst-case running time is

bounded by some polynomial in the input size.

3/3/2014

5

beyond 𝑃?

• There are many other natural, practical problems

for which we don’t know any polynomial-time

algorithms

• For example: decisionTSP

– Given a weighted graph G and an integer k,

does there exist a tour that visits all vertices in

G having total weight at most k?

satisfiability

• Boolean variables x1,...,xn

– taking values in {0,1}. 0=false, 1=true

• Literals
– xi or  xi for i=1,...,n

• Clause
– a logical OR of one or more literals

– e.g. (x1  x3  x7  x12)

• CNF formula

– a logical AND of a bunch of clauses

• k-CNF formula
– All clauses have exactly k variables

satisfiability

• CNF formula example
(x1  x3  x4)  (x2  x4  x3)  (x2  x1  x3)

• If there is some assignment of 0’s and 1’s

to the variables that makes it true then we

say the formula is satisfiable

– the one above is, the following isn’t

– x1  (x1  x2)  (x2  x3)  x3

• 3-SAT: Given a CNF formula F with 3

variables per clause, is it satisfiable?

common property of these problems

• There is a special piece of information, a short
certificate or proof, that allows you to efficiently
verify (in polynomial-time) that the YES answer is
correct. This certificate might be very hard to find

• e.g.

– DecisionTSP: the tour itself,

– Independent-Set, Clique: the set U

– 3-SAT: an assignment that makes F true.

3/3/2014

6

The complexity class 𝑁𝑃

𝑵𝑷 consists of all decision problems where

• You can verify the YES answers efficiently (in

polynomial time) given a short (polynomial-size)

certificate

and

• No certificate can fool your polynomial time

verifier into saying YES for a NO instance

more precise definition of 𝑁𝑃

• A decision problem is in 𝑁𝑃 iff there is a
polynomial time procedure verify(.,.), and an
integer k such that

– for every input x to the problem that is a YES
instance there is a certificate t with |t|  |x|k
such that verify(x,t) = YES

and

– for every input x to the problem that is a NO
instance there does not exist a certificate t with
|t|  |x|k such that verify(x,t) = YES

CLIQUE is in 𝑁𝑃

procedure verify(x,t)

if x is a well-formed representation of

 a graph G = (V, E) and an integer k,

and

 t is a well-formed representation of a vertex
subset U of V of size k,

and

 U is a clique in G,

then output "YES"

else output "I'm unconvinced"

24

is it correct?

3/3/2014

7

keys to showing a problem is in 𝑁𝑃

• What's the output? (must be YES/NO)

• What must the input look like?

• Which inputs need a YES answer?

– Call such inputs YES inputs/YES instances

• For every given YES input, is there a
certificate that would help?

– OK if some inputs need no certificate

• For any given NO input, is there a fake
certificate that would trick you?

solving 𝑁𝑃 problems without hints

The only obvious algorithm for most of these

problems is brute force:

– try all possible certificates and check each one to see if

it works.

– Exponential time:

2n truth assignments for n variables

n! possible TSP tours of n vertices

 possible k element subsets of n vertices

etc.

n

k

 
 
 

what we know

• Nobody knows if all problems in NP can be done in

polynomial time, i.e. does P = NP ?

– one of the most important open questions in all of

science.

– huge practical implications

• Every problem in P is in NP

• Every problem in NP is in exponential time

