CSE 421: Algorithms

Winter 2014

Lecture 22: P, NP, and reductions
Reading:
Sections 8.1-8.3

MY HOBBY: EMBEDDING NP-COMPLETE PROCLENS IN RESTAURANT ORDEES	
	WED LIKE EXACTLY \$15.O5 WORTH OF APPETIZERS, PEASE
MuxD frut $\quad 2.15$	
FRECOC FRIES 275	- ${ }^{\text {a }}$
SIDE SARPD $\quad 3.35$	
Hot Wincs $\quad 3.55$	
Mozzerlua Stuas 4.20	
SAMPLER PATE 5.80	
- SAvowiches ~	

relative complexity of problems

Need a notion that allows us to compare the complexity of problems.

Want to make statements of the form:

[^0]
computational complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Recall:
- worst-case running time of an algorithm
max \# steps algorithm takes on any input of size \mathbf{n}

polynomial-time reduction

- $A \leq_{p} B$ if there is an algorithm for A using a 'black box' (subroutine) that solves B that
- Uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B
- Thus, poly time algorithm for B implies poly time algorithm for A
- Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!
- If you can prove there is no fast algorithm for A, then that proves there is no fast algorithm for B

a math joke

- An engineer

- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water
- she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.
- A mathematician
- is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, "I've reduced this to an already solved problem."

special kind of poly-time reduction

- We will always use a restricted form of polynomialtime reduction often called a "Karp" or many-one reduction
- $\mathbf{A} \leq_{P}^{1} \mathbf{B}$ if and only if there is an algorithm for \mathbf{A} given a black box solving B that on input x
- Runs for polynomial time computing an input f(x)
- Makes one call to the black box for B
- Returns the answer that the black box gave

We say that the function f is the reduction.

reductions by simple equivalence

- Show: Independent-Set \leq_{p} Clique
- Independent-Set:

Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with |U| $\geq \mathbf{k}$ such that no two vertices in U are joined by an edge?

- Clique:

Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge?

Independent-Set \leq_{p} Clique

- Given (G,k) as input to Independent-Set where $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Transform to ($\mathbf{G}^{\prime}, \mathbf{k}$) where $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ has the same vertices as G but E^{\prime} consists of precisely those edges that are not edges of G
- U is an independent set in G
$\Leftrightarrow \mathbf{U}$ is a clique in \mathbf{G}^{\prime}

more reductions

- Show: Independent Set \leq_{p} Vertex-Cover
- Vertex-Cover:
- Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. \mathbf{W} covers all edges of G)?
- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ and an integer \mathbf{k}, is there a subset U of V with $|U| \geq \mathbf{k}$ such that no two vertices in U are joined by an edge?

reduction

- Map (G,k) to (G,n-k)
- Previous lemma proves correctness
- Clearly polynomial time
- We also get that
- Vertex-Cover \leq_{p} Independent Set

reduction idea

- Claim: In a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathrm{S}$ is an independent set iff V-S is a vertex cover
- Proof:
\Rightarrow Let S be an independent set in \mathbf{G}
Then \mathbf{S} contains at most one endpoint of each edge of \mathbf{G} At least one endpoint must be in V-S V-S is a vertex cover
\Leftarrow Let $\mathbf{W}=\mathbf{V}$-S be a vertex cover of \mathbf{G}
Then \mathbf{S} does not contain both endpoints of any edge (else W would miss that edge)
S is an independent set

reducing a special case to a general case

- Show: Vertex-Cover \leq_{p} Set-Cover
- Vertex-Cover:
- Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W ? (i.e. W covers all edges of G)?
- Set-Cover:
- Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of U, and an integer \mathbf{k}, does there exist a collection of at most k sets whose union is equal to U ?

the simple reduction

- Transformation f maps
$(G=(V, E), k)$ to $\left(U, S_{1}, \ldots, S_{m}, k^{\prime}\right)$
$-\mathbf{U} \leftarrow E$
- For each vertex $\mathbf{v} \in \mathbf{V}$ create a set $\mathbf{S}_{\mathbf{v}}$ containing all edges that touch v
- k' $\leftarrow k$
- Reduction f is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer.

decision problems

- Computational complexity usually analyzed using decision problems
- answer is just 1 or 0 (yes or no).
- Why?
- much simpler to deal with
- deciding whether G has a path from s to t, is certainly no harder than finding a path from s to t in G, so a lower bound on deciding is also a lower bound on finding
- Less important, but if you have a good decider, you can often use it to get a good finder.

proof of correctness

Two directions:

- If the answer to Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES then the answer for Set-Cover on $f(G, k)$ is YES
- If the answer to Set-Cover on $f(\mathbf{G}, \mathbf{k})$ is YES then the answer for Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES

polynomial time

Define P (polynomial-time) to be

- the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
- There are many other natural, practical problems for which we don't know any polynomial-time algorithms
- For example: decisionTSP
- Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k ?

satisfiability

- CNF formula example

$$
\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)
$$

- If there is some assignment of 0 's and 1 's to the variables that makes it true then we say the formula is satisfiable
- the one above is, the following isn't
$-x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}$
- 3-SAT: Given a CNF formula F with 3 variables per clause, is it satisfiable?
satisfiability
- Boolean variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ - taking values in $\{0,1\}$. $0=$ false, $1=$ true
- Literals
$-x_{i}$ or $\neg x_{i}$ for $i=1, \ldots, n$
- Clause
- a logical OR of one or more literals
- e.g. ($x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}$)
- CNF formula
- a logical AND of a bunch of clauses
- k-CNF formula
- All clauses have exactly k variables

common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find
- e.g.
- DecisionTSP: the tour itself,
- Independent-Set, Clique: the set U
- 3-SAT: an assignment that makes F true.

The complexity class $N P$
$N P$ consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate
and
- No certificate can fool your polynomial time verifier into saying YES for a NO instance

CLIQUE is in $N P$

```
```

procedure verify(x,t)

```
```

procedure verify(x,t)
if }\textrm{x}\mathrm{ is a well-formed representation of
if }\textrm{x}\mathrm{ is a well-formed representation of
a graph G = (V, E) and an integer k,
a graph G = (V, E) and an integer k,
and
and
t is a well-formed representation of a vertex
t is a well-formed representation of a vertex
subset U of V of size k,
subset U of V of size k,
and
and
U}\mathrm{ is a clique in G,
U}\mathrm{ is a clique in G,
then output "YES"
then output "YES"
else output "I'm unconvinced"

```
```

 else output "I'm unconvinced"
    ```
```

- A decision problem is in $N P$ iff there is a polynomial time procedure verify(...), and an integer k such that
- for every input x to the problem that is a YES instance there is a certificate t with $\quad|t| \leq|x|^{k}$ such that verify $(\mathbf{x}, \mathrm{t})=$ YES
and
- for every input x to the problem that is a NO instance there does not exist a certificate t with $|\mathrm{t}| \leq|\mathrm{x}|^{\mathrm{k}}$ such that verify $(\mathrm{x}, \mathrm{t})=$ YES
is it correct?

keys to showing a problem is in $N P$

- What's the output? (must be YES/NO)
- What must the input look like?
- Which inputs need a YES answer? - Call such inputs YES inputs/YES instances
- For every given YES input, is there a certificate that would help?
- OK if some inputs need no certificate
- For any given NO input, is there a fake certificate that would trick you?
what we know
- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $\mathbf{P}=\mathbf{N P}$?
- one of the most important open questions in all of science.
- huge practical implications
- Every problem in P is in NP
- Every problem in NP is in exponential time
solving $N P$ problems without hints

The only obvious algorithm for most of these problems is brute force:

- try all possible certificates and check each one to see if it works.
- Exponential time:
2^{n} truth assignments for n variables
n ! possible TSP tours of n vertices
$\binom{\mathbf{n}}{\mathbf{k}}$ possible \mathbf{k} element subsets of \mathbf{n} vertices etc.

[^0]: "If we could solve problem \mathbf{B} in polynomial time then we can solve problem \mathbf{A} in polynomial time"
 "Problem \mathbf{B} is at least as hard as problem \mathbf{A} "

