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CSE 421: Algorithms 

Winter 2014 
Lecture 22: P, NP, and reductions 

 

Reading: 

Sections 8.1-8.3 

computational complexity 

• Classify problems according to the amount of 

computational resources used by the best 

algorithms that solve them 

 

• Recall:    

– worst-case running time of an algorithm  

max # steps algorithm takes on any input of size n 

relative complexity of problems 

Need a notion that allows us to compare the 
complexity of problems. 

 

Want to make statements of the form: 

 

 “If we could solve problem B in polynomial time then we 
can solve problem A in polynomial time” 

 

“Problem B is at least as hard as problem A” 

polynomial-time reduction 

• A P
 
B if there is an algorithm for A using a ‘black box’ 

(subroutine) that solves B that 
– Uses only a polynomial number of steps  

– Makes only a polynomial number of calls to a subroutine for B 
 

• Thus, poly time algorithm for B implies poly time algorithm 
for A 
– Not only is the number of calls polynomial but the size of the 

inputs on which the calls are made is polynomial! 

 

• If you can prove there is no fast algorithm for A, then that 
proves there is no fast algorithm for B 
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a math joke 

• An engineer 

– is placed in a kitchen with an empty kettle on the table and told to 
boil water; she fills the kettle with water, puts it on the stove, turns 
on the gas and boils water. 

– she is next confronted with a kettle full of water sitting on the 
counter and told to boil water; she puts it on the stove, turns on 
the gas and boils water. 

• A mathematician 

– is placed in a kitchen with an empty kettle on the table and told to 
boil water; he fills the kettle with water, puts it on the stove, turns 
on the gas and boils water. 

– he is next confronted with a kettle full of water sitting on the 
counter and told to boil water: he empties the kettle in the sink, 
places the empty kettle on the table and says, “I’ve reduced this to 
an already solved problem.” 

 

special kind of poly-time reduction 

• We will always use a restricted form of polynomial-

time reduction often called a “Karp” or many-one 

reduction 

 

• A ≤𝑃
1  B if and only if there is an algorithm for A 

given a black box solving B that on input x 

– Runs for polynomial time computing an input f(x) 

– Makes one call to the black box for B 

– Returns the answer that the black box gave 

We say that  the function f is the reduction. 

 

reductions by simple equivalence 

• Show: Independent-Set P Clique 

• Independent-Set:  
Given a graph G=(V,E) and an integer k, is there a 
subset U of V with |U|  k such that no two 
vertices in U are joined by an edge? 

• Clique:  
Given a graph G=(V,E) and an integer k, is there a 
subset U of V with |U|  k such that every pair of 
vertices in U is joined by an edge? 

 

Independent-Set P Clique 

• Given (G,k) as input to Independent-Set where 

G=(V,E) 

 

• Transform to (G’,k) where G’=(V,E’) has the same 

vertices as G but E’ consists of precisely those 

edges that are not edges of G 

 

• U is an independent set in G 

   U is a clique in G’ 
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more reductions 

• Show: Independent Set P Vertex-Cover 

• Vertex-Cover: 

– Given an undirected graph G=(V,E) and an integer k is 
there a subset W of V of size at most k such that every 
edge of G has at least one endpoint in W?  (i.e. W 
covers all edges of G)? 

 

• Independent-Set:  

– Given a graph G=(V,E) and an integer k, is there a subset 
U of V with |U|  k such that no two vertices in U are 
joined by an edge? 

 

reduction idea 

• Claim:  In a graph G=(V,E), S is an independent set 
iff V-S is a vertex cover 

 

• Proof: 

 Let S be an independent set in G 

Then S contains at most one endpoint of each edge of G 

At least one endpoint must be in V-S 

V-S is a vertex cover 

 Let W=V-S be a vertex cover of G 

Then S does not contain both endpoints of any edge (else 
W would miss that edge) 

S is an independent set 

reduction 

• Map  (G,k) to (G,n-k) 

– Previous lemma proves correctness 

 

• Clearly polynomial time 

 

• We also get that  

– Vertex-Cover P Independent Set 

 

reducing a special case to a general case 

• Show: Vertex-Cover  P  Set-Cover 

 

• Vertex-Cover: 

– Given an undirected graph G=(V,E) and an integer k is 
there a subset W of V of size at most k such that every 
edge of G has at least one endpoint in W?  (i.e. W 
covers all edges of G)? 

 

• Set-Cover:  

– Given a set U of n elements, a collection S1,…, Sm of 
subsets of U, and an integer k, does there exist a 
collection of at most k sets whose union is equal to U? 
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the simple reduction 

• Transformation f maps            

(G=(V,E), k) to (U, S1,…,Sm, k’)  

– U  E 

– For each vertex vV create a set Sv containing all 
edges that touch v 

– k’k 

 

• Reduction f is clearly polynomial-time to compute 

• We need to prove that the resulting algorithm 
gives the right answer. 

proof of correctness 

Two directions:   

– If the answer to Vertex-Cover on (G,k) is YES then the 

answer for Set-Cover on f(G,k) is YES 

 

 

 

– If the answer to Set-Cover on f(G,k) is YES then the 

answer for Vertex-Cover on (G,k) is YES 

 

decision problems 

• Computational complexity usually analyzed using 
decision problems  

– answer is just 1 or 0  (yes or no). 

 

• Why? 

– much simpler to deal with 

– deciding whether G has a path from s to t, is certainly 
no harder than finding a path from s to t in G, so a lower 
bound on deciding is also a lower bound on finding 

– Less important, but if you have a good decider, you can 
often use it to get a good finder.   

polynomial time 

Define 𝑷 (polynomial-time) to be  

– the set of all decision problems solvable by 

algorithms whose worst-case running time is 

bounded by some polynomial in the input size.  
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beyond 𝑃? 

• There are many other natural, practical problems 

for which we don’t know any polynomial-time 

algorithms 

 

• For example:  decisionTSP 

– Given a weighted graph G and an integer k, 

does there exist a tour that visits all vertices in 

G having total weight at most k? 

satisfiability 

• Boolean variables x1,...,xn 

– taking values in {0,1}.  0=false, 1=true 

• Literals 
– xi or  xi for i=1,...,n 

• Clause 
– a logical OR of one or more literals 

– e.g. (x1  x3  x7  x12) 

• CNF formula 

– a logical AND of a bunch of clauses 

• k-CNF formula 
– All clauses have exactly k variables 

satisfiability 

• CNF formula example 
(x1  x3  x4)  ( x2  x4  x3)  ( x2  x1  x3) 

• If there is some assignment of 0’s and 1’s 

to the variables that makes it true then we 

say the formula is satisfiable 

– the one above is, the following isn’t 

– x1  (x1  x2)  (x2  x3)  x3 

• 3-SAT:  Given a CNF formula F with 3 

variables per clause, is it satisfiable? 

common property of these problems 

• There is a special piece of information, a short 
certificate or proof, that allows you to efficiently 
verify (in polynomial-time) that the YES answer is 
correct.  This certificate might be very hard to find 

 

• e.g.   

– DecisionTSP: the tour itself,  

– Independent-Set, Clique: the set U 

– 3-SAT: an assignment that makes F true. 
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The complexity class 𝑁𝑃 

𝑵𝑷 consists of all decision problems where  
 

• You can verify the YES answers efficiently (in 

polynomial time) given a short (polynomial-size) 

certificate 
 

and 
 

• No certificate can fool your polynomial time 

verifier into saying YES for a NO instance 

more precise definition of 𝑁𝑃 

• A decision problem is in 𝑁𝑃 iff there is a 
polynomial time procedure verify(.,.), and an 
integer k such that  

– for every input x to the problem that is a YES 
instance there is a certificate t with   |t|  |x|k 
such that verify(x,t) = YES  

and 

– for every input x to the problem that is a NO 
instance there does not exist a certificate t with 
|t|  |x|k such that verify(x,t) = YES 

CLIQUE is in 𝑁𝑃 

procedure verify(x,t) 

if x is a well-formed representation of 

  a graph G = (V, E) and an integer k,  

and  

 t is a well-formed representation of a vertex 
subset U of V of size k,  

and  

 U is a clique in G,  

then output "YES" 

else output "I'm unconvinced"  

24 

is it correct? 
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keys to showing a problem is in 𝑁𝑃 

• What's the output?  (must be YES/NO) 

• What must the input look like?   

• Which inputs need a YES answer? 

– Call such inputs YES inputs/YES instances 

• For every given YES input, is there a 
certificate that would help? 

– OK if some inputs need no certificate 

• For any given NO input, is there a fake 
certificate that would trick you? 

solving 𝑁𝑃 problems without hints 

The only obvious algorithm for most of these 

problems is brute force: 

– try all possible certificates and check each one to see if 

it works. 

– Exponential time: 

2n truth assignments for n variables 

n! possible TSP tours of n vertices 

       possible k element subsets of n vertices 

etc.  

n

k

 
 
 

what we know 

• Nobody knows if all problems in NP can be done in 

polynomial time, i.e. does P = NP ? 

– one of the most important open questions in all of 

science. 

– huge practical implications 

 

• Every problem in P is in NP 

 

• Every problem in NP is in exponential time 


