CSE 421: Algorithms

Winter 2014 Lecture 21: Edmonds-Karp and Project Selection

Reading: Sections 7.3-7.5

Edmonds-Karp Algorithm

Use a shortest augmenting path (via BFS in residual graph)

• Time: $O(n m^2)$

O(m.n) augmentations

current best: Goldberg-Rao (5 1/5.

• Time: $O\left(m\min\left\{m^{\frac{1}{2}}, n^{\frac{2}{3}}\right\}\log\left(\frac{n^2}{m}\right)\log U\right)$

Likely: will be nearlivear the alg dust O(mth)

Distance from s in G_f is never reduced by:

- Deleting an edge
 Proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u
 Proof: BFS is unchanged, since v visited before (u,v)
 examined

Let **f** be a flow, **G**_{**f**} the residual graph, and **P** a shortest augmenting path. Then no vertex is closer to **s** after augmentation along **P**.

Let **f** be a flow, **G**_{**f**} the residual graph, and **P** a shortest augmenting path. Then no vertex is closer to **s** after augmentation along **P**.

Proof: Augmentation along **P** only deletes forward edges, or adds back edges that go to previous vertices along **P**

theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations.

Proof:

Call (u,v) critical for augmenting path P if it's closest to s having min residual capacity

It will disappear from **G**_f after augmenting along **P**

It won't be critical again until farther from s so each edge critical at most n/2 times

Edmonds-Karp runs in O(nm²) time

Given

- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value p(v) associated with each task
 v∈V (may be positive or negative)

• Find

a set A ⊆ V of tasks that is closed under predecessors, i.e. if (u,v)∈E and u∈A then v∈A, that maximizes Profit(A)=∑_{v∈A} p(v)

project selection graph

Each task points to its predecessor tasks

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - satisfies precedence constraints
 - has maximum possible profit in G
- Cut capacity with $S = \{s\}$ is just $C = \sum_{v: p(v) \ge 0} p(v)$
 - **Profit(A)** \leq **C** for any set **A**
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
 - That would correspond to a task in A=S-{s} that had a predecessor not in A=S-{s}
- Set capacity of each of the edges of G to C+1
 - The minimum cut has size at most C

Cut value

=13+3

- Claim: Any s-t-cut (S,T) in G' such that A=S-{s} satisfies precedence constraints has capacity $c(S,T)=C - \sum_{v \in A} p(v) = C - Profit(A)$
- Corollary: A minimum cut (S,T) in G' yields an optimal solution A=S-{s} to the profit selection problem
- Algorithm: Compute maximum flow f in G', find the set S of nodes reachable from s in G'_f and return S-{s}

- A=S-{s} satisfies precedence constraints
 - No edge of G crosses forward out of A since those edges have capacity C+1
 - Only forward edges cut are of the form (v,t) for v∈A or (s,v) for v∉A
 - The (v,t) edges for $v \in A$ contribute $\sum_{v \in A: p(v) < 0} -p(v) = -\sum_{v \in A: p(v) < 0} p(v)$
 - The (s,v) edges for $v \notin A$ contribute

$$\sum_{\mathbf{v} \notin \mathbf{A}: \ \mathbf{p}(\mathbf{v}) \ge \mathbf{0}} \mathbf{p}(\mathbf{v}) = \mathbf{C} - \sum_{\mathbf{v} \in \mathbf{A}: \ \mathbf{p}(\mathbf{v}) \ge \mathbf{0}} \mathbf{p}(\mathbf{v})$$

- Therefore the total capacity of the cut is

 $\mathbf{c}(\mathbf{S},\mathbf{T}) = \mathbf{C} - \sum_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v}) = \mathbf{C} - \mathbf{Profit}(\mathbf{A})$