CSE 421: Algorithms

Winter 2014
Lecture 21: Edmonds-Karp and Project Selection
Reading:
Sections 7.3-7.5

Edmonds-Karp Algorithm

current best: Goldberg-Rao 15 yrs.

- Time: $O\left(\boldsymbol{m} \min \left\{m^{\frac{1}{2}}, n^{\frac{2}{3}}\right\} \log \left(\frac{n^{2}}{m}\right) \log U\right)$

Likely:
will be near linear time alg
almost $O(m+n)$

bfs/shortest-path lemmas

Distance from s in G_{f} is never reduced by:

- Deleting an edge

Proof: no new (hence no shorter) path created

- Adding an edge (u, v), provided v is nearer than u Proof: BFS is unchanged, since v visited before (u, v) examined

key lemma

Let f be a flow, G_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

key lemma

Let f be a flow, G_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P

augmentation vs BFS

theorem

The Edmonds-Karp Algorithm performs $\mathbf{O}(\mathrm{mn})$ flow augmentations.

Proof:

Call (\mathbf{u}, \mathbf{v}) critical for augmenting path P if it's closest to s having min residual capacity

It will disappear from G_{f} after augmenting along P

$*\{$In order for (u, v) to be critical again the (u, v) edge must re-appear in G_{f} but that will only happen when the distance to u has increased by 2 (next slide)
$\begin{array}{ll}\text { It won't be critical again until farther from } s & \Rightarrow \frac{m n}{2} \\ \text { so each edge critical at most } n / 2 \text { times } & \text { angnentations }\end{array}$

critical edges in G_{f}

After augmenting along \mathbf{P}

For (\mathbf{u}, \mathbf{v}) to be critical later for some flow \mathbf{f}^{\prime} it must be in $\mathbf{G}_{\mathbf{q}}$, so must have augmented along a shortest path containing (v,u)

Then we must have $\mathrm{d}_{\mathbf{f}^{\prime}}(\mathbf{s}, \mathbf{u})=\mathrm{d}_{\mathbf{f}^{\prime}}(\mathbf{s}, \mathbf{v})+\mathbf{1} \geq \mathrm{d}_{\mathrm{f}}(\mathbf{s}, \mathbf{v})+\mathbf{1}=\mathrm{d}_{\mathrm{f}}(\mathbf{s}, \mathbf{u})+\mathbf{2}$

corollary

- Edmonds-Karp runs in $\mathbf{O}\left(\mathrm{nm}^{2}\right)$ time

project selection

- Given
- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value $p(v)$ associated with each task $\mathbf{v} \in \mathrm{V}$ (may be positive or negative)
- Find
- a set $\mathrm{A} \subseteq \mathrm{V}$ of tasks that is closed under predecessors, i.e. if $(u, v) \in E$ and $u \in A$ then $v \in A$, that maximizes $\operatorname{Profit}(A)=\sum_{v \in A} p(v)$

project selection graph

Each task points to its predecessor tasks

extended graph

(S)

(1)

extended graph G'

For each vertex \mathbf{v}
If $\mathbf{p}(\mathbf{v}) \geq \mathbf{0}$ add (\mathbf{s}, \mathbf{v}) edge with capacity $p(v)$ If $\mathbf{p}(\mathbf{v})<\mathbf{0}$ add ($\mathbf{v}, \mathbf{t})$ edge with capacity $-\mathbf{p}(\mathbf{v})$

extended graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S, T) in G^{\prime}, the set $\mathrm{A}=\mathrm{S}$-\{s\}
- satisfies precedence constraints
- has maximum possible profit in G
- Cut capacity with $S=\{s\}$ is just $C=\sum_{v: p(v) \geq 0} p(v)$
- $\operatorname{Profit}(\mathbf{A}) \leq \mathbf{C}$ for any set \mathbf{A}
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
- That would correspond to a task in $\mathrm{A}=\mathrm{S}-\{\mathrm{s}\}$ that had a predecessor not in $A=S$-\{s\}
- Set capacity of each of the edges of G to C+1
- The minimum cut has size at most C

extended graph G'

Capacity C

project selection

- Claim: Any s-t-cut (S,T) in G' such that $A=S-\{s\}$ satisfies precedence constraints has capacity

$$
\mathbf{c}(\mathbf{S}, \mathbf{T})=\mathbf{C}-\Sigma_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v})=\mathbf{C}-\operatorname{Profit}(\mathbf{A})
$$

- Corollary: A minimum cut (S,T) in G' yields an optimal solution $A=S-\{s\}$ to the profit selection problem
- Algorithm: Compute maximum flow fin G', find the set S of nodes reachable from s in G_{f}^{\prime} and return $\mathrm{S}-\{\mathrm{s}\}$

proof of claim

- $A=S-\{s\}$ satisfies precedence constraints
- No edge of G crosses forward out of A since those edges have capacity $\mathrm{C}+1$
- Only forward edges cut are of the form (v, t) for $\mathbf{v} \in A$ or (s, v) for $v \notin A$
- The (v, t) edges for $v \in A$ contribute

$$
\sum_{v \in A: p(v)<0}-p(v)=-\sum_{v \in A: p(v)<0} p(v)
$$

- The (s,v) edges for $v \notin A$ contribute

$$
\sum_{v \notin A: p(v) \geq 0} p(v)=C-\sum_{v \in A: p(v) \geq 0} p(v)
$$

- Therefore the total capacity of the cut is

$$
\mathbf{c}(\mathbf{S}, \mathbf{T})=\mathbf{C}-\sum_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v})=\mathbf{C}-\operatorname{Profit}(\mathbf{A})
$$

