CSE 421: Algorithms

Winter 2014

Lecture 21: Edmonds-Karp and Project Selection

Reading: Sections 7.3-7.5

current best: Goldberg-Rao

• Time: $O\left(\boldsymbol{m}\min\left\{m^{\frac{1}{2}},n^{\frac{2}{3}}\right\}\log\left(\frac{n^2}{m}\right)\log U\right)$

Edmonds-Karp Algorithm

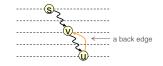
 Use a shortest augmenting path (via BFS in residual graph)

• Time: $O(n m^2)$

bfs/shortest-path lemmas

Distance from s in G_f is never reduced by:

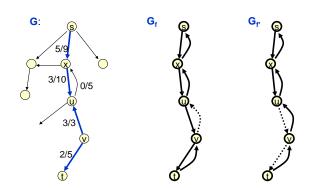
- Deleting an edge Proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u
 Proof: BFS is unchanged, since v visited before (u,v)
 examined



key lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

augmentation vs BFS



key lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along **P** only deletes forward edges, or adds back edges that go to previous vertices along **P**

theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations.

Proof:

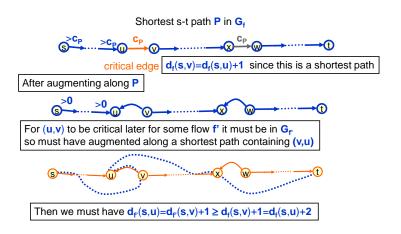
Call (u,v) critical for augmenting path ${\bf P}$ if it's closest to ${\bf s}$ having min residual capacity

It will disappear from G_f after augmenting along P

In order for (\mathbf{u},\mathbf{v}) to be critical again the (\mathbf{u},\mathbf{v}) edge must re-appear in \mathbf{G}_f but that will only happen when the distance to \mathbf{u} has increased by $\mathbf{2}$ (next slide)

It won't be critical again until farther from s so each edge critical at most n/2 times

critical edges in G_f



corollary

• Edmonds-Karp runs in O(nm²) time

project selection

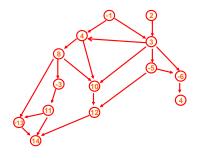
Given

- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value p(v) associated with each task
 v∈V (may be positive or negative)

Find

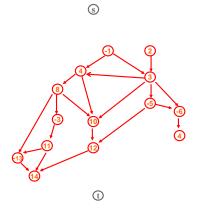
- a set A ⊆ V of tasks that is closed under predecessors, i.e. if $(u,v) \in E$ and $u \in A$ then $v \in A$, that maximizes $Profit(A) = \sum_{v \in A} p(v)$

project selection graph



Each task points to its predecessor tasks

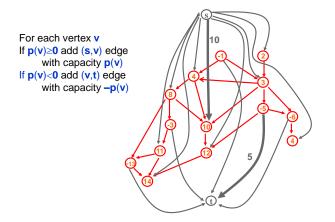
extended graph



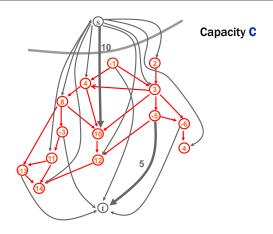
extended graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - satisfies precedence constraints
 - has maximum possible profit in G
- Cut capacity with $S=\{s\}$ is just $C=\sum_{v: p(v)\geq 0} p(v)$
 - Profit(A) ≤ C for any set A
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
 - That would correspond to a task in A=S-{s} that had a predecessor not in A=S-{s}
- Set capacity of each of the edges of G to C+1
 - The minimum cut has size at most C

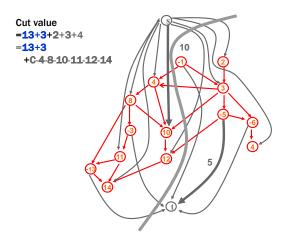
extended graph G'



extended graph G'



extended graph G'



proof of claim

- A=S-{s} satisfies precedence constraints
 - No edge of G crosses forward out of A since those edges have capacity C+1
 - Only forward edges cut are of the form (v,t) for v∈A or (s,v) for v∉A
 - The (v,t) edges for v∈A contribute

$$\sum_{\mathbf{v} \in \mathbf{A}: \mathbf{p}(\mathbf{v}) < \mathbf{0}} - \mathbf{p}(\mathbf{v}) = -\sum_{\mathbf{v} \in \mathbf{A}: \mathbf{p}(\mathbf{v}) < \mathbf{0}} \mathbf{p}(\mathbf{v})$$

- The (s,v) edges for v∉A contribute
 - $\sum\nolimits_{v \notin A: \, p(v) \geq 0} p(v) = C \sum\nolimits_{v \in A: \, p(v) \geq 0} p(v)$
- Therefore the total capacity of the cut is

$$c(S,T) = C - \sum_{v \in A} p(v) = C - Profit(A)$$

project selection

- Claim: Any s-t-cut (S,T) in G' such that A=S-{s} satisfies precedence constraints has capacity
 c(S,T)=C ∑_{v∈A} p(v) = C Profit(A)
- Corollary: A minimum cut (S,T) in G' yields an optimal solution A=S-{s} to the profit selection problem
- Algorithm: Compute maximum flow f in G', find the set S of nodes reachable from s in G'_f and return S-{s}