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CSE 421: Algorithms 

Winter 2014 
Lecture 20: Capacity-scaling and Edmonds Karp 

 

Reading: 

Sections 7.3-7.5 

max flow/min cut theorem 

Theorem:  For any flow f, if Gf has no augmenting 
path then there is some s-t-cut (A,B) such that 
n(f)=c(A,B)  (proof on next slide) 

 

• Corollary:  

– (1) F-F computes a maximum flow in G 

– (2) For any graph G, the value 𝜈(f) of a maximum flow = 

minimum capacity c(A,B) of any s-t-cut in G 

flow integrality theorem 

If all capacities are integers 

– The max flow has an integer value 

– Ford-Fulkerson method finds a max flow in 

which f(u,v) is an integer for all edges (u,v) 
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corollaries & facts 

• If Ford-Fulkerson terminates, then it has 

found a max flow. 

• It will terminate if c(e) integer or rational 

(but may not if they’re irrational). 

• However, may take exponential time, even 

with integer capacities: 
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bipartite matching bipartite matching 
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Integer flows implies each flow is just a subset of the edges 

Therefore flow corresponds to a matching 

O(mC)=O(nm) running time 

capacity-scaling algorithm 

• General idea: 

– Choose augmenting paths P with ‘large’ 

capacity cP 

– Can augment flows along a path P by any 

amount   cP  

Ford-Fulkerson still works 

– Get a flow that is maximum for the high-order 

bits first and then add more bits later 
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capacity scaling: bit 1 
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Capacity on each edge is at most 1 

(either 0 or 1 times =4) 
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capacity scaling: bit 1 
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O(nm) time 

 

 

 

 

 

 

capacity scaling: bit 2 
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Residual capacity across min cut is at most m 

(either 0 or 1 times =2) 
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capacity scaling: bit 2 
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Residual capacity across min cut is at most m 

   m augmentations 

 

 

 

 

 

 

capacity scaling: bit 3 
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Residual capacity across min cut is at most m 

(either 0 or 1 times =1) 
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capacity scaling: bit 3 
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After  m augmentations 

 

 

 

 

 

 

capacity scaling: final flow 

5/5 

5/6 

2/4 

3/3 

4/4 

1/1 

5/5 

2/3 

7/7 

6/6 4 

s 

a 

b 

c 

x 

y 

z 

t 
5/7 



2/25/2014 

5 

 

 

 

 

 

 

capacity scaling: min cut 
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total time for capacity scaling 

• log2 U rounds where U is largest capacity 

• At most m augmentations per round 

– Let ci be the capacities used in the ith round and fi be 
the maxflow found in the ith round 

For any edge (u,v), ci+1(u,v)  2ci(u,v)+1 
– i+1st round starts with flow  f = 2 fi 

– Let (A,B) be a min cut from the ith round 

n(fi)=ci(A,B) so n(f)=2ci(A,B) 
– n(fi+1)  ci+1(A,B)  2ci(A,B)+m =n(f)+m 

 

• O(m) time per augmentation 

• Total time O(m2 log U) 

Edmonds-Karp Algorithm 

• Use a shortest augmenting path  
(via BFS in residual graph) 

 

• Time: 𝑂(𝒏 𝒎𝟐) 

bfs/shortest-path lemmas 

Distance from s in Gf is never reduced by: 

 Deleting an edge 
Proof: no new (hence no shorter) path created 

 Adding an edge (u,v), provided v is nearer than u 
Proof: BFS is unchanged, since v visited before (u,v) 

examined 
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key lemma 

Let f be a flow, Gf the residual graph, and P a 

shortest augmenting path.  Then no vertex is 

closer to s after augmentation along P. 

key lemma 

Let f be a flow, Gf the residual graph, and P a 

shortest augmenting path.  Then no vertex is 

closer to s after augmentation along P. 

 

Proof: Augmentation along P only deletes 

forward edges, or adds back edges that go to 

previous vertices along P  

augmentation vs BFS 
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G: Gf Gf’ 

theorem 

The Edmonds-Karp Algorithm performs O(mn) flow 
augmentations. 

 

Proof:  

 Call (u,v) critical for augmenting path P if it’s closest to s 
having min residual capacity 

  

     It will disappear from Gf after augmenting along P 

 

 In order for (u,v) to be critical again the (u,v) edge             
must re-appear in Gf but that will only happen when the 
distance to u has increased by 2 (next slide) 

   

 It won’t be critical again until farther from s 

 so each edge critical at most n/2 times 
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critical edges in Gf 

Shortest s-t path P in Gf 

v u s x t w 
cP cP >cP >cP 

critical edge df(s,v)=df(s,u)+1  since this is a shortest path 

After augmenting along P 

>0 >0 
v u s x t w 

For (u,v) to be critical later for some flow f’ it must be in Gf’  

so must have augmented along a shortest path containing (v,u) 

v u s x t w 

Then we must have df’(s,u)=df’(s,v)+1  df(s,v)+1=df(s,u)+2  

corollary 

• Edmonds-Karp runs in O(nm2) time 

project selection 

• Given  

– a directed acyclic graph G=(V,E) representing 
precedence constraints on tasks (a task points 
to its predecessors) 

– a profit value p(v) associated with each task 
vV (may be positive or negative) 

 

• Find  

– a set A  V of tasks that is closed under 
predecessors, i.e. if (u,v)E and uA then vA, 

that maximizes Profit(A)=SvA p(v) 

project selection graph 
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extended graph 
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extended graph G’ 

For each vertex v 

If p(v)0 add (s,v) edge  

        with capacity p(v) 

If p(v)0 add (v,t) edge  

        with capacity –p(v) 
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extended graph G’ 

• Want to arrange capacities on edges of G so that for 
minimum s-t-cut (S,T) in G’, the set A=S-{s}  

– satisfies precedence constraints  

– has maximum possible profit in G 

• Cut capacity with S={s} is just C=Sv: p(v)0 p(v) 

– Profit(A)  C for any set A 

• To satisfy precedence constraints don’t want any original 
edges of G going forward across the minimum cut 

– That would correspond to a task in A=S-{s} that had a predecessor 
not in A=S-{s} 

• Set capacity of each of the edges of G to C+1 

– The minimum cut has size at most C 

 

extended graph G’ 

Capacity C 
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extended graph G’ 
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=13+3+2+3+4 

=13+3 

   +C-4-8-10-11-12-14 

project selection 

• Claim: Any s-t-cut (S,T) in G’ such that A=S-{s} 
satisfies precedence constraints has capacity                                                   

 c(S,T)=C - SvA p(v) = C - Profit(A) 

 

• Corollary:  A minimum cut (S,T) in G’ yields an 
optimal solution A=S-{s} to the profit selection 
problem 

 

• Algorithm: Compute maximum flow f in G’, find 
the set S of nodes reachable from s in G’f and 
return S-{s} 

proof of claim 

• A=S-{s} satisfies precedence constraints  

– No edge of G crosses forward out of A since those 
edges have capacity C+1 

– Only forward edges cut are of the form (v,t) for vA or 
(s,v) for vA 

– The (v,t) edges for vA contribute                     

 SvA:p(v)0 -p(v) = - SvA:p(v)0 p(v)  

– The (s,v) edges for vA contribute                        

 SvA: p(v)0 p(v)=C-SvA: p(v)0 p(v) 

– Therefore the total capacity of the cut is    

      c(S,T) = C - SvA p(v) =C-Profit(A) 

 

 


