Winter 2014

Lecture 20: Capacity-scaling and Edmonds Karp
Reading:
Sections 7.3-7.5

flow integrality theorem
If all capacities are integers

- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which $f(u, v)$ is an integer for all edges (u, v)

Theorem: For any flow f, if G_{f} has no augmenting path then there is some s-t-cut (A, B) such that $\mathbf{v}(\mathbf{f})=\mathbf{c}(\mathbf{A}, \mathbf{B})$ (proof on next slide)

- Corollary:
- (1) F-F computes a maximum flow in \mathbf{G}
- (2) For any graph \mathbf{G}, the value $v(\mathbf{f})$ of a maximum flow = minimum capacity $c(A, B)$ of any s-t-cut in G

corollaries \& facts

- If Ford-Fulkerson terminates, then it has found a max flow.
- It will terminate if $\mathbf{c}(\mathbf{e})$ integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:

bipartite matching

capacity-scaling algorithm

- General idea:
- Choose augmenting paths P with 'large' capacity C_{P}
- Can augment flows along a path P by any amount $\Delta \leq c_{p}$
Ford-Fulkerson still works
- Get a flow that is maximum for the high-order bits first and then add more bits later

Integer flows implies each flow is just a subset of the edges
Therefore flow corresponds to a matching
$\mathrm{O}(\mathrm{mC})=0(\mathrm{~nm})$ running time
capacity scaling

capacity scaling: bit 1

O(nm) time

Capacity on each edge is at most 1 (either 0 or 1 times $\Delta=4$)

capacity scaling: bit 2

Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=2$)

Residual capacity across min cut is at most m $\Rightarrow \leq \mathrm{m}$ augmentations
capacity scaling: bit 3

Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=1$)

capacity scaling: final flow

After $\leq \mathbf{m}$ augmentations

capacity scaling: min cut

total time for capacity scaling

- $\log _{2} \mathbf{U}$ rounds where \mathbf{U} is largest capacity
- At most m augmentations per round
- Let c_{i} be the capacities used in the $i^{\text {th }}$ round and f_{i} be the maxflow found in the $i^{\text {th }}$ round
For any edge $(\mathbf{u}, \mathbf{v}), \mathbf{c}_{\mathbf{i}+1}(\mathbf{u}, \mathbf{v}) \leq \mathbf{2} \mathrm{c}_{\mathrm{i}}(\mathbf{u}, \mathbf{v})+\mathbf{1}$
$-i+1^{\text {st }}$ round starts with flow $f=2 f_{i}$
- Let (A, B) be a min cut from the $i^{\text {th }}$ round $v\left(f_{i}\right)=c_{i}(A, B)$ so $v(f)=2 c_{i}(A, B)$
$-v\left(f_{i+1}\right) \leq c_{i+1}(A, B) \leq \mathbf{2} c_{i}(A, B)+m=v(f)+m$
- $O(m)$ time per augmentation
- Total time $O\left(\mathrm{~m}^{2} \log \mathrm{U}\right)$

bfs/shortest-path lemmas

Distance from sin G_{f} is never reduced by:

- Deleting an edge

Proof: no new (hence no shorter) path created

- Adding an edge (u, v), provided v is nearer than u Proof: BFS is unchanged, since v visited before (u, v) examined

Let f be a flow, G_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

augmentation vs BFS

Let f be a flow, G_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P

theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations.

Proof:
Call (\mathbf{u}, \mathbf{v}) critical for augmenting path P if it's closest to s having min residual capacity

It will disappear from G_{f} after augmenting along P
In order for (u, v) to be critical again the (u, v) edge must re-appear in G_{f} but that will only happen when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from s so each edge critical at most $\mathrm{n} / 2$ times

Shortest s-t path \mathbf{P} in \mathbf{G}_{f}

critical edge $\mathrm{d}_{\mathrm{f}}(\mathbf{s}, \mathbf{v})=\mathrm{d}_{\mathrm{f}}(\mathbf{s}, \mathbf{u})+\mathbf{1}$ since this is a shortest path
After augmenting along \mathbf{P}

For (\mathbf{u}, \mathbf{v}) to be critical later for some flow f^{\prime} it must be in \mathbf{G}_{f}, so must have augmented along a shortest path containing (\mathbf{v}, \mathbf{u})

Then we must have $d_{f}(\mathbf{s}, \mathbf{u})=d_{f}(\mathbf{s}, \mathbf{v})+\mathbf{1} \geq \mathrm{d}_{\mathrm{f}}(\mathbf{s}, \mathbf{v})+\mathbf{1}=\mathrm{d}_{\mathrm{f}}(\mathbf{s}, \mathbf{u})+\mathbf{2}$

project selection

- Given
- a directed acyclic graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ representing precedence constraints on tasks (a task points to its predecessors)
- a profit value $p(v)$ associated with each task $\mathbf{v} \in \mathrm{V}$ (may be positive or negative)
- Find
- a set $A \subseteq V$ of tasks that is closed under predecessors, i.e. if $(u, v) \in E$ and $u \in A$ then $v \in A$, that maximizes $\operatorname{Profit}(A)=\sum_{v \in A} p(v)$
corollary
- Edmonds-Karp runs in $\mathrm{O}\left(\mathrm{nm}^{2}\right)$ time

project selection graph

[^0]
extended graph

(1)

extended graph G'

- Want to arrange capacities on edges of \mathbf{G} so that for minimum s-t-cut (S,T) in G^{\prime}, the set $\mathrm{A}=\mathrm{S}-\{\mathrm{s}\}$
- satisfies precedence constraints
- has maximum possible profit in G
- Cut capacity with $\mathbf{S}=\{\mathbf{s}\}$ is just $\mathbf{C}=\sum_{v: p(v) \geq 0} p(v)$
- Profit(A) $\leq \mathbf{C}$ for any set \mathbf{A}
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
- That would correspond to a task in $\mathrm{A}=\mathrm{S}-\{\mathrm{s}\}$ that had a predecessor not in $\mathrm{A}=\mathrm{S}-\{\mathrm{s}\}$
- Set capacity of each of the edges of G to $C+1$
- The minimum cut has size at most \mathbf{C}

For each vertex v If $\mathbf{p}(\mathbf{v}) \geq \mathbf{0}$ add (\mathbf{s}, \mathbf{v}) edge with capacity $\mathbf{p}(\mathbf{v})$
If $\mathbf{p}(\mathbf{v})<0$ add ($\mathbf{v}, \mathrm{t})$ edge with capacity $-\mathbf{p}(\mathbf{v}$

extended graph G'

extended graph G'

Cut value
$=13+3+2+3+4$
$=13+3$
+C-4-8-10-11-12-14

proof of claim

- $A=S-\{s\}$ satisfies precedence constraints
- No edge of G crosses forward out of A since those edges have capacity $\mathrm{C}+1$
- Only forward edges cut are of the form (v,t) for $\mathbf{v} \in \mathbf{A}$ or (s, v) for $v \notin A$
- The (\mathbf{v}, t) edges for $\mathbf{v} \in \mathbf{A}$ contribute
$\sum_{v \in A: p(v)<0}-p(v)=-\sum_{v \in A: p(v)<0} p(v)$
- The (\mathbf{s}, v) edges for $\mathrm{v} \notin \mathrm{A}$ contribute
$\Sigma_{v \notin A: p(v) \geq 0} p(v)=c-\Sigma_{v}$
- Therefore the total capacity of the cut is

$$
\mathbf{c}(\mathbf{S}, \mathbf{T})=\mathbf{C}-\sum_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v})=\mathbf{C - P r o f i t}(\mathbf{A})
$$

project selection

- Claim: Any s-t-cut (S,T) in G' such that $A=S-\{s\}$ satisfies precedence constraints has capacity $\mathbf{c}(\mathbf{S}, \mathbf{T})=\mathbf{C}-\sum_{\mathbf{v} \in \mathrm{A}} \mathbf{p}(\mathbf{v})=\mathbf{C}-\operatorname{Profit}(\mathbf{A})$
- Corollary: A minimum cut (S,T) in \mathbf{G}^{\prime} yields an optimal solution $A=S-\{s\}$ to the profit selection problem
- Algorithm: Compute maximum flow f in G^{\prime}, find the set S of nodes reachable from s in G_{f}^{\prime} and return S-\{s\}

[^0]: Each task points to its predecessor tasks

