CSE 421: Algorithms

Winter 2014 Lecture 20: Capacity-scaling and Edmonds Karp

Reading: Sections 7.3-7.5

max flow/min cut theorem

- Theorem: For any flow f, if G_f has no augmenting path then there is some s-t-cut (A,B) such that v(f)=c(A,B) (proof on next slide)
- Corollary:
 - (1) F-F computes a maximum flow in G
 - (2) For any graph G, the value $\nu(f)$ of a maximum flow = minimum capacity c(A,B) of any s-t-cut in G

flow integrality theorem

If all capacities are integers

- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)

corollaries & facts

- If Ford-Fulkerson terminates, then it has found a max flow.
- It will terminate if c(e) integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:

bipartite matching

bipartite matching

Integer flows implies each flow is just a subset of the edges Therefore flow corresponds to a matching O(mC)=O(nm) running time

capacity-scaling algorithm

- General idea:
 - Choose augmenting paths P with 'large' capacity c_P
 - Can augment flows along a path P by any amount $\Delta \leq c_{P}$

```
Ford-Fulkerson still works
```

 Get a flow that is maximum for the high-order bits first and then add more bits later

capacity scaling

capacity scaling

capacity scaling: bit 1

capacity scaling: bit 1

O(nm) time

capacity scaling: bit 2

Residual capacity across min cut is at most **m** (either **0** or **1** times Δ =**2**)

capacity scaling: bit 2

Residual capacity across min cut is at most m

 $\Rightarrow \leq m$ augmentations

Residual capacity across min cut is at most **m** (either **0** or **1** times Δ =**1**)

capacity scaling: bit 3

After ≤ m augmentations

capacity scaling: final flow

capacity scaling: min cut

total time for capacity scaling

- log₂ U rounds where U is largest capacity
- · At most m augmentations per round
 - Let c_i be the capacities used in the i^{th} round and f_i be the maxflow found in the i^{th} round
 - For any edge (u,v), $c_{i+1}(u,v) \le 2c_i(u,v)+1$
 - -i+1st round starts with flow f = 2 f_i
 - Let (A,B) be a min cut from the ith round $v(f_i)=c_i(A,B)$ so $v(f)=2c_i(A,B)$
 - $-\nu(\textbf{f_{l+1}}) \leq \textbf{c_{l+1}}(\textbf{A},\textbf{B}) \leq \textbf{2c_l}(\textbf{A},\textbf{B}) + \textbf{m} = \nu(\textbf{f}) + \textbf{m}$
- **O(m)** time per augmentation
- Total time O(m² log U)

Edmonds-Karp Algorithm

- Use a shortest augmenting path (via BFS in residual graph)
- Time: $0(n m^2)$

bfs/shortest-path lemmas

Distance from **s** in **G**_f is never reduced by:

- Deleting an edge Proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u Proof: BFS is unchanged, since v visited before (u,v) examined

key lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

key lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along **P** only deletes forward edges, or adds back edges that go to previous vertices along **P**

augmentation vs BFS

theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations.

Proof:

Call (u,v) critical for augmenting path P if it's closest to s having min residual capacity

It will disappear from G_f after augmenting along P

In order for (u,v) to be critical again the (u,v) edge must re-appear in G_f but that will only happen when the distance to u has increased by 2 $({\sf next slide})$

It won't be critical again until farther from s so each edge critical at most n/2 times

critical edges in G_f

corollary

• Edmonds-Karp runs in O(nm²) time

project selection

• Given

- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value p(v) associated with each task
 v∈V (may be positive or negative)

• Find

 a set A ⊆ V of tasks that is closed under predecessors, i.e. if (u,v)∈E and u∈A then v∈A, that maximizes Profit(A)=∑_{v∈A} p(v)

project selection graph

Each task points to its predecessor tasks

extended graph

extended graph G'

extended graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - satisfies precedence constraints
 - $-\,$ has maximum possible profit in ${\rm G}$
- Cut capacity with S={s} is just C= $\sum_{\mathbf{v}: \mathbf{p}(\mathbf{v}) \ge 0} \mathbf{p}(\mathbf{v})$
 - $Profit(A) \leq C$ for any set A
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
 - That would correspond to a task in A=S-(s) that had a predecessor not in A=S-(s)
- Set capacity of each of the edges of G to C+1
 - The minimum cut has size at most C

extended graph G'

extended graph G'

project selection

- Claim: Any s-t-cut (S,T) in G' such that A=S-{s} satisfies precedence constraints has capacity c(S,T)=C - ∑_{v∈A} p(v) = C - Profit(A)
- Corollary: A minimum cut (S,T) in G' yields an optimal solution A=S-{s} to the profit selection problem
- Algorithm: Compute maximum flow f in G', find the set S of nodes reachable from s in G'_f and return S-{s}

proof of claim

- A=S-{s} satisfies precedence constraints
 - No edge of G crosses forward out of A since those edges have capacity C+1
 - − Only forward edges cut are of the form (v,t) for v∈A or (s,v) for v∉A
 - The (v,t) edges for $v \in A$ contribute

 $\sum_{\mathbf{v}\in\mathbf{A}:\mathbf{p}(\mathbf{v})<\mathbf{0}} -\mathbf{p}(\mathbf{v}) = -\sum_{\mathbf{v}\in\mathbf{A}:\mathbf{p}(\mathbf{v})<\mathbf{0}} \mathbf{p}(\mathbf{v})$

- The (s,v) edges for $v \notin A$ contribute

 $\sum_{\mathbf{v} \notin \mathbf{A}: \ \mathbf{p}(\mathbf{v}) \ge \mathbf{0}} \mathbf{p}(\mathbf{v}) = \mathbf{C} - \sum_{\mathbf{v} \in \mathbf{A}: \ \mathbf{p}(\mathbf{v}) \ge \mathbf{0}} \mathbf{p}(\mathbf{v})$

- Therefore the total capacity of the cut is

 $c(S,T) = C - \sum_{v \in A} p(v) = C - Profit(A)$