
2/25/2014

1

CSE 421: Algorithms

Winter 2014
Lecture 20: Capacity-scaling and Edmonds Karp

Reading:

Sections 7.3-7.5

max flow/min cut theorem

Theorem: For any flow f, if Gf has no augmenting
path then there is some s-t-cut (A,B) such that
n(f)=c(A,B) (proof on next slide)

• Corollary:

– (1) F-F computes a maximum flow in G

– (2) For any graph G, the value 𝜈(f) of a maximum flow =

minimum capacity c(A,B) of any s-t-cut in G

flow integrality theorem

If all capacities are integers

– The max flow has an integer value

– Ford-Fulkerson method finds a max flow in

which f(u,v) is an integer for all edges (u,v)

t s

0.5/1

0.5/1 0.5/1

0.5/1

1/1

corollaries & facts

• If Ford-Fulkerson terminates, then it has

found a max flow.

• It will terminate if c(e) integer or rational

(but may not if they’re irrational).

• However, may take exponential time, even

with integer capacities:

s
c a

t

b

c

c

1

c

c = 109, say

2/25/2014

2

bipartite matching bipartite matching

1

1

1

1

1

1

1

1

1

1

1

s

a

b

c

x

y

z

t

Integer flows implies each flow is just a subset of the edges

Therefore flow corresponds to a matching

O(mC)=O(nm) running time

capacity-scaling algorithm

• General idea:

– Choose augmenting paths P with ‘large’

capacity cP

– Can augment flows along a path P by any

amount   cP

Ford-Fulkerson still works

– Get a flow that is maximum for the high-order

bits first and then add more bits later

capacity scaling

5

6

7

4

3

4

1

5

3

7

6 4

s

a

b

c

x

y

z

t

2/25/2014

3

capacity scaling

101

110

111

100

011

100

001

101

011

111

110 100

s

a

b

c

x

y

z

t

capacity scaling: bit 1

101

110

111

100

011

100

001

101

011

111

110 100

s

a

b

c

x

y

z

t

Capacity on each edge is at most 1

(either 0 or 1 times =4)

1/111

capacity scaling: bit 1

101

1/110

100

011

1/100

001

1/101

011

1/111

1/110 100

s

a

b

c

x

y

z

t

O(nm) time

capacity scaling: bit 2

101

10/110

10/111

100

011

10/100

001

10/101

011

10/111

10/110 100

s

a

b

c

x

y

z

t

Residual capacity across min cut is at most m

(either 0 or 1 times =2)

2/25/2014

4

capacity scaling: bit 2

10/101

10/110

10/111

01/100

01/011

10/100

001

10/101

01/011

11/111

10/110 100

s

a

b

c

x

y

z

t

Residual capacity across min cut is at most m

  m augmentations

capacity scaling: bit 3

100/101

100/110

010/100

010/011

100/100

001

100/101

010/011

110/111

100/110 100

s

a

b

c

x

y

z

t

Residual capacity across min cut is at most m

(either 0 or 1 times =1)

100/111

capacity scaling: bit 3

101/101

101/110

010/100

011/011

100/100

001/001

101/101

010/011

111/111

110/110 100

s

a

b

c

x

y

z

t
101/111

After  m augmentations

capacity scaling: final flow

5/5

5/6

2/4

3/3

4/4

1/1

5/5

2/3

7/7

6/6 4

s

a

b

c

x

y

z

t
5/7

2/25/2014

5

capacity scaling: min cut

5/5

5/6

2/4

3/3

4/4

1/1

5/5

2/3

7/7

6/6 4

s

a

b

c

x

y

z

t
5/7

total time for capacity scaling

• log2 U rounds where U is largest capacity

• At most m augmentations per round

– Let ci be the capacities used in the ith round and fi be
the maxflow found in the ith round

For any edge (u,v), ci+1(u,v)  2ci(u,v)+1
– i+1st round starts with flow f = 2 fi

– Let (A,B) be a min cut from the ith round

n(fi)=ci(A,B) so n(f)=2ci(A,B)
– n(fi+1)  ci+1(A,B)  2ci(A,B)+m =n(f)+m

• O(m) time per augmentation

• Total time O(m2 log U)

Edmonds-Karp Algorithm

• Use a shortest augmenting path
(via BFS in residual graph)

• Time: 𝑂(𝒏 𝒎𝟐)

bfs/shortest-path lemmas

Distance from s in Gf is never reduced by:

 Deleting an edge
Proof: no new (hence no shorter) path created

 Adding an edge (u,v), provided v is nearer than u
Proof: BFS is unchanged, since v visited before (u,v)

examined

s

v

u

a back edge

2/25/2014

6

key lemma

Let f be a flow, Gf the residual graph, and P a

shortest augmenting path. Then no vertex is

closer to s after augmentation along P.

key lemma

Let f be a flow, Gf the residual graph, and P a

shortest augmenting path. Then no vertex is

closer to s after augmentation along P.

Proof: Augmentation along P only deletes

forward edges, or adds back edges that go to

previous vertices along P

augmentation vs BFS

t

v

u

x

s

5/9

3/10
0/5

3/3

2/5

t

v

u

x

s

t

v

u

x

s
G: Gf Gf’

theorem

The Edmonds-Karp Algorithm performs O(mn) flow
augmentations.

Proof:

 Call (u,v) critical for augmenting path P if it’s closest to s
having min residual capacity

 It will disappear from Gf after augmenting along P

 In order for (u,v) to be critical again the (u,v) edge
must re-appear in Gf but that will only happen when the
distance to u has increased by 2 (next slide)

 It won’t be critical again until farther from s

 so each edge critical at most n/2 times

2/25/2014

7

critical edges in Gf

Shortest s-t path P in Gf

v u s x t w
cP cP >cP >cP

critical edge df(s,v)=df(s,u)+1 since this is a shortest path

After augmenting along P

>0 >0
v u s x t w

For (u,v) to be critical later for some flow f’ it must be in Gf’

so must have augmented along a shortest path containing (v,u)

v u s x t w

Then we must have df’(s,u)=df’(s,v)+1  df(s,v)+1=df(s,u)+2

corollary

• Edmonds-Karp runs in O(nm2) time

project selection

• Given

– a directed acyclic graph G=(V,E) representing
precedence constraints on tasks (a task points
to its predecessors)

– a profit value p(v) associated with each task
vV (may be positive or negative)

• Find

– a set A  V of tasks that is closed under
predecessors, i.e. if (u,v)E and uA then vA,

that maximizes Profit(A)=SvA p(v)

project selection graph

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

Each task points to its predecessor tasks

2/25/2014

8

extended graph

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

extended graph G’

For each vertex v

If p(v)0 add (s,v) edge

 with capacity p(v)

If p(v)0 add (v,t) edge

 with capacity –p(v)

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

5

10

extended graph G’

• Want to arrange capacities on edges of G so that for
minimum s-t-cut (S,T) in G’, the set A=S-{s}

– satisfies precedence constraints

– has maximum possible profit in G

• Cut capacity with S={s} is just C=Sv: p(v)0 p(v)

– Profit(A)  C for any set A

• To satisfy precedence constraints don’t want any original
edges of G going forward across the minimum cut

– That would correspond to a task in A=S-{s} that had a predecessor
not in A=S-{s}

• Set capacity of each of the edges of G to C+1

– The minimum cut has size at most C

extended graph G’

Capacity C

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

5

10

2/25/2014

9

extended graph G’

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

5

10

Cut value

=13+3+2+3+4

=13+3

 +C-4-8-10-11-12-14

project selection

• Claim: Any s-t-cut (S,T) in G’ such that A=S-{s}
satisfies precedence constraints has capacity

 c(S,T)=C - SvA p(v) = C - Profit(A)

• Corollary: A minimum cut (S,T) in G’ yields an
optimal solution A=S-{s} to the profit selection
problem

• Algorithm: Compute maximum flow f in G’, find
the set S of nodes reachable from s in G’f and
return S-{s}

proof of claim

• A=S-{s} satisfies precedence constraints

– No edge of G crosses forward out of A since those
edges have capacity C+1

– Only forward edges cut are of the form (v,t) for vA or
(s,v) for vA

– The (v,t) edges for vA contribute

 SvA:p(v)0 -p(v) = - SvA:p(v)0 p(v)

– The (s,v) edges for vA contribute

 SvA: p(v)0 p(v)=C-SvA: p(v)0 p(v)

– Therefore the total capacity of the cut is

 c(S,T) = C - SvA p(v) =C-Profit(A)

