CSE 421: Algorithms

Winter 2014

Lecture 2: Stable matching
Reading: Chapter 2 of Kleinberg-Tardos

propose-and-reject algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962]
Intuitive method that is guaranteed to find a stable matching.

```
Initialize each person to be free
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    w = 1 'st woman on m's list to whom m has not yet proposed
    f (w is free)
        assign m and w to be engaged
    else if (w prefers m}\mathrm{ to her fiancé m')
        assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```

http://mathsite.math.berkeley.edu/smp/smp.htmI http://www.cs.columbia.edu/~evs/intro/stable/Stable.html http://demonstrations.wolfram.com/StableMarriages/

proof of correctness: termination

- Observation 1. Men propose to women in decreasing order of preference.
- Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."
- Claim. Algorithm terminates after at most n^{2} iterations of while loop.
- Proof. Each time through the while loop a man proposes to a new woman. There are only n^{2} possible proposals. -

$n(n-1)+1$ proposals required

proof of correctness: perfection

- Claim: All men and women get matched.
- Proof:

proof of correctness: stability

Claim: No unstable pairs.

Proof: (by contradiction)

- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S*.

summary

- Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.
- How to implement GS algorithm efficiently?
- If there are multiple stable matchings, which one does GS find?

implementation

- Problem size
- $N=2 n^{2}$ words
$2 n$ people each with a preference list of length n
$-2 n^{2} \log n$ bits specifying an ordering for each preference list: $n \log n$ bits
- Brute force algorithm
- Try all n ! possible matchings
- Do any of them work?
- Gale-Shapley Algorithm
$-n^{2}$ iterations, each costing constant time as follows:

efficient implementation

Efficient implementation. We describe $\mathbf{O}\left(\mathbf{n}^{2}\right)$ time implementation.
Representing men and women.

- Assume men are named 1, ..., n.
- Assume women are named 1', ..., n'.

Engagements.

- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays wife[m], and husband[w]. set entry to 0 if unmatched
if m matched to w then wife $[m]=w$ and husband $[w]=m$
Men proposing.
- For each man, maintain a list of women, ordered by preference.
- Maintain an array count[m] that counts the number of proposals made by man m.

efficient implementation

Women rejecting/accepting.

- Does woman w prefer man m to man m '?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after $0(n)$ preprocessing per woman. $\mathbf{O}\left(\mathrm{n}^{2}\right)$ total reprocessing cost.


```
for i = 1 to n
    inverse[pref[i]] = i
```

Amy prefers man 3 to 6 since inverse $[3]=2$ < $7=$ inverse [6]

efficient implementation

Women rejecting/accepting.

- Does woman w prefer man m to man m^{\prime} ?

understanding the solution

For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.

$$
\begin{aligned}
& \text { - A-X, B-Y, C-Z. } \\
& \text { - A-Y, B-X, C-Z. }
\end{aligned}
$$

understanding the solution

- For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?
- Def. Man m is a valid partner of woman w if there exists some stable matching in which they are matched.
- Man-optimal assignment. Each man receives best valid partner (according to his preferences).

man optimality

Claim. GS matching S^{*} is man-optimal.

- Proof. (by contradiction)
- Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference \Rightarrow some man is rejected by a valid partner.
- Let \mathbf{Y} be the man who is the first such rejection, and let \mathbf{A} be the women who is first valid partner that rejects him.
- Let \mathbf{S} be a stable matching where \mathbf{A} and Y are matched.

understanding the solution

- For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?
- Def. Man m is a valid partner of woman \mathbf{w} if there exists some stable matching in which they are matched.
- Man-optimal assignment. Each man receives best valid partner (according to his preferences).
- Claim. All executions of GS yield a man-optimal assignment, which is a stable matching!
- No reason a priori to believe that man-optimal assignment is perfect, let alone stable.
- Simultaneously best for each and every man.

stable matching summary

Stable matching problem. Given preference profiles of n men and n women, find a stable matching.

Gale-Shapley algorithm. Finds a stable matching in $O\left(n^{2}\right)$ time.

Man-optimality. In version of GS where men propose, each man receives best valid partner.

Does man-optimality come at the expense of the women?
measuring efficiency: the RAM model

- RAM = Random Access Machine
- Time $\approx \#$ of instructions executed in an ideal assembly language
- each simple operation (+,*,,,=, if, call) takes one time step
- each memory access takes one time step

complexity

- The complexity of an algorithm associates a number $\mathrm{T}(\mathrm{N})$, the worst/average-case/best time the algorithm takes, with each problem size \mathbf{N}.
- Mathematically,
$-T: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ is a function that maps positive integers giving problem size to positive real numbers giving number of steps
complexity analysis
- Problem size N
- Worst-case complexity: max \# steps algorithm takes on any input of size \mathbf{N}
- Average-case complexity: average \# steps algorithm takes on inputs of size \mathbf{N}
complexity

Problem size N
complexity

