CSE 421.: Algorithms

Winter 2014

Lecture 19: The max-flow/min-cut theorem

Reading:
Sections 7.1-7.2

oA @ Wous
250 = 4w
CSE L4D




finding maximum-flows (integer capacities)




Ford-Fulkerson method

Start with f = O for every edge
While G; has an augmenting path, augment.

Questions:
— Does it halt?

— Does it find a maximum flow?
— How fast?



residual capacity

* The residual capacity (w.r.t. f) of (u,v) is
c,(u,v) = c(u,v) - f(u,v) if f(u,v) < c(u,v) and
c;(u,v)=f(v,u) if f(v,u) > 0

* e.8. c(s,b)=7; c(a,x) = 1; c(x,a) =3



residual graph & augmenting paths

* The residual graph (w.r.t. f) is the graph
G; = (V,E;), where E;={(u,v) | c{u,v)>0]}

— Two Kinds of edges
Forward edges
f(u,v)<c(u,v) so ¢u,v)=c(u,v)-f(u,v)>0
Backward edges
f(u,v)>0so civ,u) > -f(v,u)=f(u,v)>0

 An augmenting path (w.r.t. f) is a simple
s — t path in G..



augmenting a flow along a path

augment(f,P)
Cp <— Ming, , p C(U,V)
for each ecP
if e is a forward edge then
increase f(e) by ¢,
else (e is a backward edge)
decrease f(e) by ¢,
endif
endfor
return(f)



augmenting a flow beg\n t=o




last time

Lemma:

If G; has an augmenting path P, then the
function f’=augment(f,P) is a legal flow.

‘/



always halts

* At every stage the capacities and flow values are
always integers (if they start that way)

* The flow value v(f’) = v(f) + ¢, > v(f) for
f = augment(f,P)

— Since edges of residual capacity O do not appear in the
residual graph

* Let C =Y (s epc(s,u)
—v(f)<C $

— F-F does at most C rounds of augmentation since flows
are integers and increase by at least 1 per step



running time

* Forf=0,G;=G

* Finding an augmenting path in G; is graph
search O(n+m)=0(m) time

* Augmenting and updating G, is O(n) time

» Total O(mC) time ([ = Cq. out o <

* Does it find a maximum flow?

— Need to show that for every flow f that isn’t
maximum G; contains an s-t-path

O S e
f\o___:p/ =



cuts

* A partition (A,B) of Vis an s-t-cut if
scA, teB
* Capacity of cut (A,B)is c(A,B) = ZC(U,V)

ueA
veB




convenient definitions

* FUA) =2 A wea VW) .

* fiN(A) = ZveA, uga f (U,V)




claims we will prove V() < C(%\ &Z«;‘(‘X@)

* For any flow f and any (s,t)-cut (A,B),

{— the net flow across the cut equals the total flow:
v(f) = fou(A)-fin(A), and

— the net flow across the cut cannot exceed the

c(A,R)

capacity of the cut: fou{(A)-fi"(A) < c(A,B) 2
» Corollary: £ ) = £ @)
Max flow < Min cut 1 Cut Cap =3

— 1 Net Flow =1

A B
CutCap =2
1
@ &,‘f 1 Net Flow = 1

/




proof of claim

 Consider a set A with seA, tgA

o fou(A) - n(A) =2y en FOVW) - Zcp uen F(ULV)

 We can add flow values for edges with both endpoints in A
to both sums and they would cancel out so

e fout(A) - fin(A) = Z ig(u)v’\ - 2 2 ‘E@;V)

\/éA we\/ \/LA wé\/
— 2 Z L(ww) - f__-('(q,v))
Ve A \\wevV Le Vv

© VH=Fs) and frE)=0 = < ™5 £ &)
— ve A _ ’Fgu'r(s.) = V(_‘,)




proof of claim

IN

v(f) = fo(A) - fin(A) -
fout(A) Qi:%
= ZveA, wea F(V,W) : j};

< ZveA, weA C(V,W)

< ZVGA, weB C(V,W)
= C(A,B)

amémxv OJ;’QQ"W < C_(A\&B
WP 1D



max flow/min cut theorem

- )
Theorem: For any flow f, if G; has no augmenting
path then there is some s-t-cut (A,B) such that

V(f)—C(A B) (proof on next slide)

v () /«C(A.g? CAB) = vEF) < c (K B)
10

 We know by previous claims that any flow f’ satisfies
v(f’) < ¢(A,B) and we know that F-F runs for finite time
until it finds a flow f satisfying conditions of the theorem
Therefore for any flow f, v(f’) <v(f)

* Corollary: e

— (1) F-F computes a maximum flow in G

N

— (2) For any graph G, the value n(f) of a maximum flow =
minimum capacity ¢(A,B) of any s-t-cut in G



proof of the theorem Assie - GQ

a\-:;, \‘m%
Let A={u | Japathin G;:fromstou}
B=V-A;, seA,teB N
saturated

f(u,v)=c(u,v)

This is true for every edge crossing the cut:
v(f) = fout(A) - fin(A) = ¢(A,B) and fn(A) =_O_ hence

f(A)=> f(u,v)=> c(u,v)=c(A,B)

ueA ueA
veB veB



flow integrality theorem

If all capacities are integers
— The max flow has an integer value

— Ford-Fulkerson method finds a max flow in
which f(u,v) is an integer for all edges (u,v)




corollaries & facts

* |f Ford-Fulkerson terminates, then it has
found a max flow.

|t will terminate if c(e) integer or rational
(but may not if they’re irrational).

* However, may take exponential time, even
with integer capacities:




bipartite matching

Integer flows implies each flow is just a subset of the edges
Therefore flow corresponds to a matching

O(mC)=0(nm) running time



next time: capacity-scaling algorithm

 General idea:
— Choose augmenting paths P with ‘large’
capacity cp

— Can augment flows along a path P by any
amount A <c,
Ford-Fulkerson still works

— Get a flow that is maximum for the high-order
bits first and then add more bits later



