
CSE 421: Algorithms

Winter 2014
Lecture 19:  The max-flow/min-cut theorem

Reading:

Sections 7.1-7.2



finding maximum-flows (integer capacities)
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Ford-Fulkerson method

Start with f = 0 for every edge

While Gf has an augmenting path, augment.

Questions:

– Does it halt?

– Does it find a maximum flow?

– How fast?



residual capacity

• The residual capacity (w.r.t. f) of (u,v) is 
cf(u,v) = c(u,v) - f(u,v) if f(u,v)  c(u,v) and
cf(u,v)=f(v,u) if f(v,u)  0

• e.g. cf(s,b)=7; cf(a,x) = 1; cf(x,a) = 3
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residual graph & augmenting paths

• The residual graph (w.r.t. f) is the graph

Gf = (V,Ef),    where  Ef = { (u,v) | cf(u,v)  0 }
– Two kinds of edges 

Forward edges 

f(u,v)c(u,v) so cf(u,v)=c(u,v)-f(u,v)0

Backward edges 

f(u,v)0 so  cf(v,u)  -f(v,u)=f(u,v)0

• An augmenting path (w.r.t. f) is a simple

s  t path in Gf.



augmenting a flow along a path

augment(f,P)

cP min(u,v)P cf(u,v)           “bottleneck(P)”

for each eP

if e is a forward edge then

increase f(e) by cP
else (e is a backward edge)

decrease f(e) by cP
endif

endfor

return(f)



augmenting a flow
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last time

Lemma:  

If Gf has an augmenting path P, then the 

function f’=augment(f,P) is a legal flow.



always halts

• At every stage the capacities and flow values are 
always integers (if they start that way)

• The flow value n(f’) = n(f) + cP n(f) for 

f’ =  augment(f,P)

– Since edges of residual capacity 0 do not appear in the 
residual graph

• Let 𝑪 =  𝒔,𝒖 ∈𝑬 𝒄 𝒔, 𝒖

– n(f)  C

– F-F does at most C rounds of augmentation since flows 
are integers and increase by at least 1 per step



running time

• For f = 0, Gf = G

• Finding an augmenting path in Gf is graph 
search O(n+m)=O(m) time

• Augmenting and updating Gf is O(n) time

• Total O(mC) time

• Does it find a maximum flow?

– Need to show that for every flow f that isn’t 
maximum Gf contains an s-t-path
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cuts

• A partition (A,B) of V is an s-t-cut if 

sA, tB

• Capacity of cut (A,B) is




u A
v B

c(A,B) c(u,v)
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convenient definitions

• fout(A) = SvA, wA f (v,w)

• fin(A) = SvA, uA f (u,v)
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claims we will prove

• For any flow f and any (s,t)-cut (A,B),

– the net flow across the cut equals the total flow: 

n(f) = fout(A)-fin(A), and   

– the net flow across the cut cannot exceed the 

capacity of the cut:  fout(A)-fin(A)  c(A,B)

• Corollary:

Max flow  Min cut 1
s

t

1

1

1

1

Cut Cap  = 3

Net Flow = 1

Cut Cap  = 2

Net Flow = 1



proof of claim

• Consider a set A with sA, tA

• fout(A) - fin(A) =SvA, wA f (v,w) - SvA, uA f (u,v)

• We can add flow values for edges with both endpoints in A
to both sums and they would cancel out so

• fout(A) - fin(A) = 

• n(f) = fout(s) and  fin(s)=0



proof of claim

n(f) = fout(A) - fin(A)

 fout(A)                                       

= SvA, wA f (v,w)                                 

 SvA, wA c(v,w)

 SvA, wB c(v,w) 

= c(A,B)



max flow/min cut theorem

Theorem:  For any flow f, if Gf has no augmenting 
path then there is some s-t-cut (A,B) such that 
n(f)=c(A,B)  (proof on next slide)

• We know by previous claims that any flow f’ satisfies

n(f’)  c(A,B) and we know that F-F runs for finite time 

until it finds a flow f satisfying conditions of the theorem

Therefore for any flow f’, n(f’) n(f)

• Corollary: 

– (1) F-F computes a maximum flow in G

– (2) For any graph G, the value n(f) of a maximum flow =

minimum capacity c(A,B) of any s-t-cut in G



proof of the theorem

Let A = { u |  a path in Gf from s to u }

B = V - A;  s  A, t  B

This is true for every edge crossing the cut:  

n(f) = fout(A) - fin(A) = c(A,B)  and fin(A) = ____ hence  

s t

A         B

u v

 
 

   out

u A u A
v B v B

f A f u,v c u,v c A,B( ) ( ) ( ) ( )

w

saturated

f(u,v)=c(u,v)

no flow

f(w,u)=0x



flow integrality theorem

If all capacities are integers

– The max flow has an integer value

– Ford-Fulkerson method finds a max flow in 

which f(u,v) is an integer for all edges (u,v)

ts

0.5/1

0.5/10.5/1

0.5/1

1/1



corollaries & facts

• If Ford-Fulkerson terminates, then it has 

found a max flow.

• It will terminate if c(e) integer or rational

(but may not if they’re irrational).

• However, may take exponential time, even 

with integer capacities:
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bipartite matching
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Integer flows implies each flow is just a subset of the edges

Therefore flow corresponds to a matching

O(mC)=O(nm) running time



next time:  capacity-scaling algorithm

• General idea:

– Choose augmenting paths P with ‘large’ 

capacity cP

– Can augment flows along a path P by any 

amount  cP 

Ford-Fulkerson still works

– Get a flow that is maximum for the high-order 

bits first and then add more bits later


