2/23/2014

CSE 421.: Algorithms finding maximum-flows (integer capacities)

Winter 2014
Lecture 18: The max-flow/min-cut theorem

Reading:
Sections 7.1-7.2

Ford-Fulkerson method residual capacity
Start with f = O for every edge * The residual capacity (w.r.t. f) of (u,v) is
While G, has an augmenting path, augment. c(u,v) = c(u,v) - f(u,v) if f(u,v) < c(u,v) and

cq(u,v)=f(v,u) if f(v,u)> 0

Questions:
— Does it halt?
— Does it find a maximum flow?
— How fast?

* e.g. ¢(s,b)=7; c{a,x) =1; c{x,a)=3



residual graph & augmenting paths

augmenting a flow along a path

* The residual graph (w.r.t. f) is the graph
G;=(V,E;), where E;={(uyv) | c{u,v)>0}

— Two kinds of edges
Forward edges
f(u,v)<c(u,v) so c{u,v)=c(u,v)-f(u,v)>0
Backward edges
f(u,v)>0s0 cgv,u) > -f(v,u)=f(u,v)>0

* An augmenting path (w.r.t. f) is a simple
s — t path in G..

augmenting a flow

augment(f,P)
Cp < MiN,y)cp C(U,V)
for each ecP
if e is a forward edge then
increase f(e) by ¢,
else (e is a backward edge)
decrease f(e) by c,
endif
endfor
return(f)

last time

Lemma:

If G; has an augmenting path P, then the
function f=augment(f,P) is a legal flow.

2/23/2014



always halts

2/23/2014

running time

* At every stage the capacities and flow values are
always integers (if they start that way)

* The flow value v(f’) = v(f) + cp > v(f) for
= augment(f,P)

— Since edges of residual capacity O do not appear in the
residual graph

* LetC =X e c(s,u)
-v(f)<C

— F-F does at most C rounds of augmentation since flows
are integers and increase by at least 1 per step

cuts

Forf=0,G;=G

Finding an augmenting path in G; is graph
search O(n+m)=0(m) time

Augmenting and updating G; is O(n) time
Total O(mC) time

Does it find a maximum flow?

— Need to show that for every flow f that isn’t
maximum G; contains an s-t-path

convenient definitions

* A partition (A,B) of V is an s-t-cut if

seA, teB
- Capacity of cut (A,B)is c(A,B) = > c(u,v)

ueA
veB

 FUA) =X a wea F(V,W)

* fY(A) = Zycn, uea F(UY)



claims

2/23/2014

proof of claim

* For any flow f and any (s,t)-cut (A,B),
— the net flow across the cut equals the total flow:

v(f) = fout(A)-fin(A), and

— the net flow across the cut cannot exceed the
capacity of the cut: fout(A)-fin(A) < c(A,B)

* Corollary:

Max flow < Min cut @_1@

proof of claim

* Consider a set A with seA, t¢A

o fout(A)- fin(A) =2, s L afOVW) -2 a uea F(UV)

* We can add flow values for edges with both endpoints in A
to both sums and they would cancel out so

° fout(A) - fin(A) =

o v(f) = fout(s) and fin(s)=0

max flow/min cut theorem

v(f) fout(A) - fin(A)

fout(A)

IA

= ZveA,weA f(v,w)
< ZveA,WgEA C(V,W)

< ZveA,weB C(V,W)
= ¢(A,B)

Theorem: For any flow f, if G; has no augmenting
path then there is some s-t-cut (A,B) such that
V(f)=C(A,B) (proof on next slide)

* We know by previous claims that any flow f’ satisfies
v(f’) < ¢(A,B) and we know that F-F runs for finite time
until it finds a flow f satisfying conditions of the theorem
Therefore for any flow #, v(f’) <v(f)

* Corollary:
— (1) F-F computes a maximum flow in G
— (2) For any graph G, the value n(f) of a maximum flow =

minimum capacity ¢(A,B) of any s-t-cut in G



proof of the theorem

flow integrality theorem

LetA={u | 3 apathinG;fromstou}
B=V-A;scAteB

saturated
f(u,v)=c(u,v)

This is true for every edge crossing the cut:
v(f) = fout(A) - fin(A) = ¢(A,B) and f"(A) = O hence

o (A)=> f(u,v) =) c(u,v) =c(A,B)

ueA ueA
veB veB

corollaries & facts

If all capacities are integers
— The max flow has an integer value

— Ford-Fulkerson method finds a max flow in
which f(u,v) is an integer for all edges (u,v)

bipartite matching

* |f Ford-Fulkerson terminates, then it has
found a max flow.

* It will terminate if c(e) integer or rational
(but may not if they’re irrational).

* However, may take exponential time, even

with integer capacities:

c =109, say

O——® : ©

Integer flows implies each flow is just a subset of the edges

Therefore flow corresponds to a matching

O(mC)=0(nm) running time

2/23/2014



2/23/2014

hext time: capacity-scaling algorithm

* General idea:
— Choose augmenting paths P with ‘large’
capacity cp
— Can augment flows along a path P by any
amount A <cp
Ford-Fulkerson still works

— Get a flow that is maximum for the high-order
bits first and then add more bits later



