CSE 421: Algorithms

Winter 2014

Lecture 18: Network flow

Reading:
Sections 6.6-6.10

bipartite matching

Given: A bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Def: $\mathrm{M} \subseteq \mathrm{E}$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum possible size

bipartite matching

bipartite matching

the network flow problem

15

How much stuff can flow from s to t ?

bipartite matching as a special case

bipartite matching as a special case $f^{\text {out }}(s)^{?} f^{\prime \prime}(t)$

Given:

A digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Two vertices s,t in V
(source \& sink)
A capacity $\mathbf{c}(\mathbf{u}, \mathbf{v}) \geq \mathbf{0}$ for each $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ (and $c(u, v)=0$ for all nonedges (u,v))

Find:

A flow function $\mathbf{f}: \mathbf{E} \rightarrow \mathbf{R}$ s.t. for all u, v :

- $0 \leq f(u, v) \leq c(u, v)$
[Capacity Constraint]
- if $\mathbf{u} \neq \mathbf{s}$,t, we have fout $\left.^{(u)} \mathbf{u}\right)=\mathrm{f}^{\text {in }}(\mathbf{u})$
[Flow Conservation]
Maximizing total flow $n(f)=f^{\text {out }}(\mathbf{s})$

Notation:

$$
f^{\mathrm{in}}(v)=\sum_{e=(\mathbf{u}, \mathbf{v}) \in \mathrm{E}} \mathbf{f}(\mathbf{u}, \mathbf{v}) \quad f^{\text {out }}(\mathbf{v})=\sum_{\mathrm{e}=(\mathrm{v}, \mathbf{w}) \in \mathrm{E}} \mathbf{f}(\mathbf{v}, \mathbf{w})
$$

example: a flow function

example: a flow function

- Not shown: $f(u, v)$ if $=0$
- Note: max flow ≥ 4 since f is a flow function, with $v(\mathrm{f})=4$

greedy algorithm?

While there is an $s \rightarrow t$ path in G
Pick such a path, p
Find c , the min capacity of any edge in p
Subtract c from all capacities on p
Delete edges of capacity 0

- This does NOT always find a max flow:

If pick $\mathbf{s} \rightarrow \mathbf{b} \rightarrow \mathbf{a} \rightarrow \mathrm{t}$
first, flow stuck at 2.
But flow 3 possible.

a brief history of flow

\#	year	discoverer(s)	bound	
1	1951	Dantzig	$O\left(n^{2} m U\right)$	
2	1955	Ford \& Fulkerson	$O(\mathrm{nmU})$	
3	1970	Dinitz Edmonds \& Karp	$O\left(n m^{2}\right)$	
4	1970	Dinitz	$O\left(n^{2} m\right)$	n= \# of edges
5	1972	Edmonds \& Karp Dinitz	$O\left(m^{2} \log U\right)$	$\mathrm{U}=\mathrm{Max} \text { capacity }$
6	1973	Dinitz Gabow	$O(n m \log U)$	
7	1974	Karzanov	$O\left(n^{3}\right)$	Source: Goldberg
8	1977	Cherkassky	$O\left(n^{2} \sqrt{m}\right)$	\& Rao, FOCS '97
9	1980	Galil \& Naamad	$O\left(n m \log ^{2} n\right)$	
10	1983	Sleator \& Tarjan	$O(n m \log n)$	
11	1986	Goldberg \& Tarjan	$O\left(n m \log \left(n^{2} / m\right)\right)$	
12	1987	Ahuja \& Orlin	$O\left(n m+n^{2} \log U\right)$	r
13	1987	Ahuja et al.	$O(n m \log (n \sqrt{\log U} /(m+2))$	
14	1989	Cheriyan \& Hagerup	$E\left(n m+n^{2} \log ^{2} n\right)$	
15	1990	Cheriyan et al.	$O\left(n^{3} / \log n\right)$	
16	1990	Alon	$O\left(n m+n^{8 / 3} \log n\right)$	m
17	1992	King et al.	$O\left(n m+n^{2+\epsilon}\right)$	
18	1993	Phillips \& Westbrook	$O\left(n m\left(\log _{m / n} n+\log ^{2+\epsilon} n\right)\right)$	
19	1994	King et al.	$O\left(n m \log _{m /(n \log n)} n\right)$	
20	1997	Goldberg \& Rao	$\begin{aligned} & O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log U\right) \\ & O\left(n^{2 / 3} m \log \left(n^{2} / m\right) \log U\right) \\ & \hline \hline \end{aligned}$	$O\left(m^{1}\right)$
	2012	Orlin + King et al.	$\left(d n^{3}\right)^{e}$	

greed revisited: augmenting paths

Residual Graph

greed revisited: augmenting paths

New Residual Graph

residual capacity

- The residual capacity (w.r.t. f) of (\mathbf{u}, \mathbf{v}) is $c_{f}(u, v)=c(u, v)-f(u, v)$ if $f(u, v) \leq c(u, v)$ and $\mathbf{c}_{f}(\mathbf{u}, \mathbf{v})=f(\mathbf{v}, \mathbf{u})$ if $f(\mathbf{v}, \mathbf{u})>0$

- e.g. $c_{f}(s, b)=7 ; c_{f}(a, x)=1 ; c_{f}(x, a)=3$

residual graph \& augmenting paths

- The residual graph (w.r.t. f) is the graph $\mathrm{G}_{\mathrm{f}}=\left(\mathbf{V}, \mathrm{E}_{\mathrm{f}}\right)$, where $\mathrm{E}_{\mathrm{f}}=\left\{(\mathbf{u}, \mathbf{v}) \mid \mathrm{c}_{\mathrm{f}}(\mathbf{u}, \mathbf{v})>0\right\}$
- Two kinds of edges

Forward edges

$$
f(u, v)<c(u, v) \text { so } c_{f}(u, v)=c(u, v)-f(u, v)>0
$$

Backward edges

$$
f(\mathbf{u}, \mathbf{v})>0 \text { so } c_{f}(\mathbf{v}, \mathbf{u}) \geq-f(\mathbf{v}, \mathbf{u})=f(\mathbf{u}, \mathbf{v})>0
$$

$$
C_{f}(v, u)=c(v, u)+
$$

- An augmenting path (w.r.t. f) is a simple $f(y, v)$ $s \rightarrow$ t path in G_{f}.

a residual network

an augmenting path

augmenting a flow along a path

augment (fl)
$\mathbf{c}_{\mathbf{P}} \leftarrow \min _{(\mathbf{u}, \mathbf{v}) \in \mathbf{P}} \mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) \quad$ "bottlenec keP)"
for each $\mathbf{e} \in \mathbf{P}$
if \mathbf{e} is a forward edge then
increase $f(\mathbf{e})$ by $\mathbf{c}_{\mathbf{p}}$
else (e is a backward edge)
decrease $f(\mathbf{e})$ by $\mathbf{c}_{\mathbf{p}}$
bcekuard
endif
endfor
return(f)

G_{f}

augmenting a flow

claim

If G_{f} has an augmenting path P, then the function $f^{\prime}=$ augment (f, P) is a legal flow.

Proof:
f^{\prime} and f differ only on the edges of P so only need to consider such edges (u,v)

proof of claim

- If (\mathbf{u}, v) is a forward edge then

$$
\begin{aligned}
f^{\prime}(\mathbf{u}, \mathbf{v}) & =f(\mathbf{u}, \mathbf{v})+\mathbf{c}_{\mathbf{p}} \leq f(\mathbf{u}, \mathbf{v})+c_{f}(\mathbf{u}, \mathbf{v}) \\
& =f(\mathbf{u}, \mathbf{v})+\mathbf{c}(\mathbf{u}, \mathbf{v})-f(\mathbf{u}, \mathbf{v}) \\
& =\mathbf{c}(\mathbf{u}, \mathbf{v})
\end{aligned}
$$

- If (u, v) is a backward edge then f and f^{\prime} differ on flow along (\mathbf{v}, \mathbf{u}) instead of (\mathbf{u}, v)

$$
\begin{aligned}
\mathbf{f}^{\prime}(\mathbf{v}, \mathbf{u}) & =f(\mathbf{v}, \mathbf{u})-\mathbf{c}_{\mathbf{P}} \geq \mathbf{f}(\mathbf{v}, \mathbf{u})-\mathbf{c}_{\mathrm{f}}(\mathbf{u}, \mathbf{v}) \\
& =\mathbf{f}(\mathbf{v}, \mathbf{u})-\mathbf{f}(\mathbf{v}, \mathbf{u})=\mathbf{0}
\end{aligned}
$$

- Other conditions like flow conservation still met

Ford-Fulkerson method

Start with $\mathrm{f}=0$ for every edge
While G_{f} has an augmenting path, augment.

Questions:

- Does it halt?
- Does it find a maximum flow?
- How fast?

observations

- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value $v\left(f^{\prime}\right)=v(f)+c_{P}>v(f)$ for
$\mathbf{f}^{\prime}=$ augment(f,P)
- Since edges of residual capacity 0 do not appear in the residual graph
- Let $C=\sum_{(s, u) \in E} c(s, u)$
$-v(f) \leq C$
- F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step

running time

- For $f=0, G_{f}=G$
- Finding an augmenting path in G_{f} is graph search $0(n+m)=0(m)$ time
- Augmenting and updating G_{f} is $O(n)$ time
- Total O(mC) time
- Does is find a maximum flow?
- Need to show that for every flow f that isn't maximum G_{f} contains an s-t-path

cuts

- A partition (A, B) of V is an s-t-cut if $\mathbf{s} \in \mathbf{A}, \mathbf{t} \in \mathbf{B}$
- Capacity of cut (A, B) is $c(A, B)=\sum_{\substack{u \in A \\ v \in B}} c(u, v)$

convenient definitions

- $f^{\text {out }}(A)=\sum_{v \in A, w \notin A} f(v, w)$
- $f^{\operatorname{in}}(A)=\sum_{v \in A, u \notin A} f(u, v)$

claims

- For any flow f and any cut (A,B),
- the net flow across the cut equals the total flow: $v(f)=f^{\text {out }}(A)-$ fin (A), and
- the net flow across the cut cannot exceed the capacity of the cut: fout $(A)-f^{i n}(A) \leq c(A, B)$
- Corollary:

Max flow \leq Min cut

proof of claim

- Consider a set A with $s \in A, t \notin A$
- $f^{\text {out }}(\mathbf{A})-\mathrm{fin}^{\mathrm{in}}(\mathbf{A})=\sum_{\mathrm{v} \in \mathrm{A}, \mathbf{w} \notin \mathrm{A}} f(\mathbf{v}, \mathbf{w})-\Sigma_{\mathrm{v} \in \mathrm{A}, \mathrm{u} \notin \mathrm{A}} f(\mathbf{u}, \mathbf{v})$
- We can add flow values for edges with both endpoints in A to both sums and they would cancel out so
- $f^{\text {out }}(A)-f^{\text {in }}(A)=$
- $v(f)=f^{\text {out }}(\mathbf{s})$ and $f^{\text {in }}(\mathbf{s})=0$

proof of claim

$$
\begin{aligned}
v(f) & =f^{\text {out }}(\mathbf{A})-f^{\text {in }}(\mathbf{A}) \\
& \leq f^{\text {out }}(\mathbf{A}) \\
& =\Sigma_{v \in A, w \notin A} f(\mathbf{v}, \mathbf{w}) \\
& \leq \Sigma_{v \in A, w \notin A} c(v, w) \\
& \leq \Sigma_{v \in A, w \in B} c(\mathbf{v}, \mathbf{w}) \\
& =\mathbf{c}(\mathbf{A}, \mathbf{B})
\end{aligned}
$$

max flow/min cut theorem

Theorem: For any flow f, if G_{f} has no augmenting path then there is some s-t-cut (A, B) such that $\mathbf{v}(\mathbf{f})=\mathbf{c}(\mathbf{A}, \mathbf{B})$ (proof on next slide)

- We know by previous claims that any flow f' satisfies $v\left(f^{\prime}\right) \leq c(A, B)$ and we know that F-F runs for finite time until it finds a flow f satisfying conditions of the theorem Therefore for any flow $\mathrm{f}^{\prime}, v\left(\mathbf{f}^{\prime}\right) \leq v(f)$
- Corollary:
- (1) F-F computes a maximum flow in G
- (2) For any graph G, the value $n(f)$ of a maximum flow = minimum capacity $c(A, B)$ of any s-t-cut in G

proof of the theorem

Let $A=\left\{u \mid \exists\right.$ a path in G_{f} from stou $\}$
$B=V-A ; s \in A, t \in B$

saturated
$\mathbf{f}(\mathbf{u}, \mathbf{v})=\mathbf{c}(\mathbf{u}, \mathbf{v})$ no flow $\mathrm{f}(\mathbf{w}, \mathbf{u})=\mathbf{0}$

This is true for every edge crossing the cut: $\nu(f)=f^{\circ o u t}(A)-f^{i n}(A)=c(A, B)$ and $f^{\text {in }}(A)=0$ hence

$$
\mathbf{f}^{\text {out }}(\mathbf{A})=\sum_{\substack{\mathbf{u} \in \mathbf{A} \\ \mathbf{v} \in \mathbf{B}}} \mathbf{f}(\mathbf{u}, \mathbf{v})=\sum_{\substack{\mathbf{u} \in \mathbf{A} \\ \mathbf{v} \in \mathrm{B}}} \mathbf{c}(\mathbf{u}, \mathbf{v})=\mathbf{c}(\mathbf{A}, \mathbf{B})
$$

