CSE 421.: Algorithms

Winter 2014
Lecture 18: Network flow

Reading:
Sections 6.6-6.10

bipartite matching

Given: A bipartite graph G=(V,E)

Def: M c E is a matching in G iff no two edges in
M share a vertex

Goal: Find a matching M in G of maximum
possible size

bipartite matching

bipartite matching

b!‘M(./S k(YMVﬂ(’S

the network flow problem

How much stuff can flow fromstot ?

bipartite matching as a special case

/F(’“*\ ? W
bipartite matching as a special case () ‘21C)

@, O

Given: Find: ¢ L
A digra A flow function f: E — R s.t. for

Two vertices s,tin V all u,v:
(source & sink) * 0 <f(u,v) <c(u,v)
. [Capacity Constraint]
A I > . .
capacity UV =0 e ot we have fout(u)=f in(u)
for eaCh (u,V) S E [Flow Conservation]
(and c(u,v) = O for all non-
edges (u,v)) Maximizing total flow n(f) = fou(s)
Notation:

fin(v) - Ze:(u,v)eEf(u’v) fOUt (V) - Ze:(v,w)eEf(v’W)

example: a flow function

flow/capacity, not .66...

22 (2B)

example: a flow function

* Not shown: f(u,v) if =0

e Note: max flow > 4 since
f is a flow function, with v(f) = 4

greedy algorithm?

While thereisans — t path in G
Pick such a path, p
Find ¢, the min capacity of any edge in p
Subtract ¢ from all capacities on p
Delete edges of capacity O

* This does NOT always find a max flow:

If picks >b —a >t
first, flow stuck at 2.
But flow 3 possible.

a brief history of flow

| year | discoverer(s) bound
1 | 1951 | Dantzig O(n*mU)
2 | 1955 | Ford & Fulkerson O(nmU)
3 | 1970 | Dinitz O{nm?)
Edmonds & Karp
4| 1970 | Dinitz O(nZm)
5 | 1972 | Edmonds & Karp O(m?logU)
Dinitz
6 | 1973 | Dinitz O(nmlogU)
Gabow
7 | 1974 | Karzanov O(n?)
8 | 1977 | Cherkassky O(n*\/m)
9 | 1980 | Galil & Naamad O(nmlog* n)
10 | 1983 | Sleator & Tarjan O(nmlogn)
11 | 1986 | Goldberg & Tarjan Of{nmlog(n®/m))
12 | 1987 | Ahuja & Orlin O(nm + n?logU)
13 | 1987 | Ahuja et al. O(nmlog(n/logU /(m + 2))
14 | 1989 | Cheriyan & Hagerup | E(nm + n?log” n)
15 | 1990 | Cheriyan et al. O(n’/logn)
16 | 1990 | Alon O(nm + n®/3logn)
17 | 1992 | King et al. O(nm + n**¢)
18 | 1993 | Phillips & Westbrook | O(nm(log,,,, n + log" ‘ n))
19 | 1994 | King et al. O(nml1og,,, /(niog n) ™)
20 | 1997 | Goldberg & Rao O(m>/? log(n?/m) logU)
O(n?/*mlog(n?/m)logU)

<
2012 Orlin + King et al. Q)(n/ml)a 'B & - Qe
h>)

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg
& Rao, FOCS ‘97

greed revisited: augmenting paths

Residual Graph

greed revisited: augmenting paths

New Residual Graph

residual capacity

* The residual capacity (w.r.t. f) of (u,v) is
c,(u,v) = c(u,v) - f(u,v) if f(u,v) < c(u,v) and
c;(u,v)=f(v,u) if f(v,u) > 0

* e.8. c(s,b)=7; c(a,x) = 1; c(x,a) =3

residual graph & augmenting paths

* The residual graph (w.r.t. f) is the graph

G; = (V,E;), where E;={(u,v) | c{u,v)>0]}
— Two kinds of edges 0

O—>6
Forward edges %
f(u,v)<c(u,v) so ¢u,v)=c(u,v)-f(u,v)>0
Backward edges w q/1
f(u,v)>0so civ,u) > -f(v,u)=f(u,v)>0 O=——>

C@(\/,U\\ zCc(u)
« An augmenting path (w.r.t. f) is a simple €& ~)

s — t path in G..

a residual network

an augmenting path

augmenting a flow along a path

augment(f,P)
Cp <— Ming, , p C(U,V)
for each ecP
if e is a forward edge then
increase f(e) by ¢,

else (e is a backward edge)
decrease f(e) by ¢, J/

endif O/?s ©
endfor @a‘/’
return(f) G’ &—-

augmenting a flow

claim

If G; has an augmenting path P, then the
function f’=augment(f,P) is a legal flow.

Proof:

f’ and f differ only on the edges of P so only
need to consider such edges (u,v)

proof of claim

* If (u,v) is a forward edge then

f'(u,v) = f(u,v)+cp < f(u,v)+cqu,v)
= f(u,v)+c(u,v)-f(u,v)

= ¢(u,v)

* If (u,v) is a backward edge then f and f’ differ on
flow along (v,u) instead of (u,v)
f'(v,u) = f(v,u) - cp, > f(v,u)- c,(u,v) y‘) O

= f(v,u)-f(v,u)=0

0 L
16

 Other conditions like flow conservation still met

Ford-Fulkerson method

Start with f = O for every edge
While G; has an augmenting path, augment.

Questions:
— Does it halt?

— Does it find a maximum flow?
— How fast?

observations

* At every stage the capacities and flow values are
always integers (if they start that way)

* The flow value v(f’) = v(f) + ¢, > v(f) for
f = augment(f,P)

— Since edges of residual capacity O do not appear in the
residual graph

* Let C =Y (s epc(s,u)
—v(f)<C

— F-F does at most C rounds of augmentation since flows
are integers and increase by at least 1 per step

running time

* Forf=0,G;=G

* Finding an augmenting path in G; is graph
search O(n+m)=0(m) time

* Augmenting and updating G, is O(n) time

e Total O(mC) time

e Does is find a maximum flow?

— Need to show that for every flow f that isn’t
maximum G; contains an s-t-path

cuts

* A partition (A,B) of Vis an s-t-cut if
scA, teB
* Capacity of cut (A,B)is c(A,B) = ZC(U,V)

ueA
veB

convenient definitions

+ FUA) = 2Zycp wea (VW)

* fiN(A) = ZveA, uga f (U,V)

claims

* For any flow f and any cut (A,B),

— the net flow across the cut equals the total flow:
v(f) = fou(A)-fin(A), and

— the net flow across the cut cannot exceed the
capacity of the cut: fou{(A)-fi"(A) < c(A,B)

* Corollary:
Max flow < Min cut 1 Cut Cap =3
Net Flow =1
1
CutCap =2

Net Flow = 1

proof of claim

 Consider a set A with seA, tgA

o fou(A) - n(A) =2y en FOVW) - Zcp uen F(ULV)

 We can add flow values for edges with both endpoints in A
to both sums and they would cancel out so

o fout(A) - fin(A) =

+ v(f) = feut(s) and fin(s)=0

proof of claim

v(f) fout(A) - fin(A)

< fout(A)
= ZveA, wea T (V,W)
< ZveA, wea C(V,W)

< ZVGA, weB
= ¢(A,B)

c(v,w)

max flow/min cut theorem

Theorem: For any flow f, if G; has no augmenting
path then there is some s-t-cut (A,B) such that
v(f)=c(A,B) (proof on next slide)

 We know by previous claims that any flow f’ satisfies
v(f’) < ¢(A,B) and we know that F-F runs for finite time
until it finds a flow f satisfying conditions of the theorem
Therefore for any flow f, v(f’) <v(f)

* Corollary:
— (1) F-F computes a maximum flow in G

— (2) For any graph G, the value n(f) of a maximum flow =
minimum capacity ¢(A,B) of any s-t-cut in G

proof of the theorem

Let A={u | Japathin G;:fromstou}
B=V-A;seAteB

saturated
f(u,v)=c(u,v)

This is true for every edge crossing the cut:
v(f) = fouY(A) - fin(A) = ¢(A,B) and fi"(A) = O hence

f(A)=> f(u,v)=> c(u,v)=c(A,B)

ueA ueA
veB veB

