CSE 421: Algorithms

Winter 2014 Lecture 18: Network flow

Reading: Sections 6.6-6.10

bipartite matching

Given: A bipartite graph G=(V,E)
Def: M ⊆ E is a matching in G iff no two edges in M share a vertex

Goal: Find a matching **M** in **G** of maximum possible size

bipartite matching

bipartite matching

the network flow problem

How much stuff can flow from s to t?

bipartite matching as a special case

bipartite matching as a special case

example: a flow function

example: a flow function

- Not shown: f(u,v) if = 0
- Note: max flow ≥ 4 since f is a flow function, with v(f) = 4

greedy algorithm?

- While there is an $s \rightarrow t$ path in G Pick such a path, p Find c, the min capacity of any edge in p Subtract c from all capacities on p Delete edges of capacity 0
- This does NOT always find a max flow:

If pick $s \rightarrow b \rightarrow a \rightarrow t$ first, flow stuck at 2. But flow 3 possible.

a brief history of flow

#	year	discoverer(s)	bound
1	1951	Dantzig	$O(n^2mU)$
2	1955	Ford & Fulkerson	O(nmU)
3	1970	Dinitz	$O(nm^2)$
		Edmonds & Karp	
4	1970	Dinitz	$O(n^2m)$
5	1972	Edmonds & Karp	$O(m^2 \log U)$
		Dinitz	
6	1973	Dinitz	$O(nm \log U)$
		Gabow	
7	1974	Karzanov	$O(n^3)$
8	1977	Cherkassky	$O(n^2\sqrt{m})$
9	1980	Galil & Naamad	$O(nm \log^2 n)$
10	1983	Sleator & Tarjan	$O(nm \log n)$
11	1986	Goldberg & Tarjan	$O(nm \log(n^2/m))$
12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
13	1987	Ahuja et al.	$O(nm \log(n\sqrt{\log U}/(m+2)))$
14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
15	1990	Cheriyan et al.	$O(n^3/\log n)$
16	1990	Alon	$O(nm + n^{8/3} \log n)$
17	1992	King et al.	$O(nm + n^{2+\epsilon})$
18	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
19	1994	King et al.	$O(nm \log_{m/(n \log n)} n)$
20	1997	Goldberg & Rao	$O(m^{3/2} \log(n^2/m) \log U)$
			$O(n^{2/3}m \log(n^2/m) \log U)$

n = # of vertices m= # of edges U = Max capacity

Source: Goldberg & Rao, FOCS '97

greed revisited: augmenting paths

2012 Orlin + King et al. O(nm)

greed revisited: augmenting paths

residual capacity

- The residual capacity (w.r.t. f) of (u,v) is $c_f(u,v)=c(u,v)$ - f(u,v) if $f(u,v)\leq c(u,v)$ and $c_f(u,v){=}f(v,u)$ if f(v,u)>0

residual graph & augmenting paths

- The residual graph (w.r.t. f) is the graph $G_f = (V, E_f)$, where $E_f = \{ (u, v) \mid c_f(u, v) > 0 \}$
 - Two kinds of edges Forward edges f(u,v) < c(u,v) so $c_f(u,v) = c(u,v) - f(u,v) > 0$ Backward edges f(u,v) > 0 so $c_f(v,u) \ge -f(v,u) = f(u,v) > 0$
- An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_f .

a residual network

an augmenting path

augmenting a flow along a path

 $\begin{array}{c} augment(f,P) \\ \hline c_P \leftarrow \min_{(u,v) \in P} c_f(u,v) & \text{``bottleneck}(P)'' \\ \hline for each e \in P \\ & \text{if e is a forward edge then} \\ & \text{increase } f(e) \ by \ c_P \\ & \text{else } (e \ is \ a \ backward \ edge) \\ & \text{decrease } f(e) \ by \ c_P \\ & \text{endif} \\ endfor \\ & \text{return}(f) \end{array}$

augmenting a flow

claim

If G_f has an augmenting path P, then the function f'=augment(f,P) is a legal flow.

Proof:

f' and f differ only on the edges of P so only need to consider such edges (u,v)

proof of claim

- If (u,v) is a forward edge then $f'(u,v) = f(u,v)+c_p \le f(u,v)+c_f(u,v)$ = f(u,v)+c(u,v)-f(u,v) = c(u,v)
- If (u,v) is a backward edge then f and f' differ on flow along (v,u) instead of (u,v)

 $\begin{aligned} f'(v,u) &= f(v,u) - c_p \geq f(v,u) - \ c_f(u,v) \\ &= f(v,u) - f(v,u) = 0 \end{aligned}$

Other conditions like flow conservation still met

Ford-Fulkerson method

Start with f = 0 for every edge While G_f has an augmenting path, augment.

Questions:

- Does it halt?
- Does it find a maximum flow?
- How fast?

observations

- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value $v(f') = v(f) + c_p > v(f)$ for

f' = augment(f,P)

- Since edges of residual capacity 0 do not appear in the residual graph
- Let $C = \sum_{(s,u) \in E} c(s, u)$
 - $\nu(\textbf{f}) \leq \textbf{C}$
 - F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step

running time

- For **f** = **0**, **G**_f = **G**
- Finding an augmenting path in G_f is graph search O(n+m)=O(m) time
- Augmenting and updating G_f is O(n) time
- Total O(mC) time
- Does is find a maximum flow?
 - Need to show that for every flow f that isn't maximum G_f contains an s-t-path

cuts

- A partition (A,B) of V is an s-t-cut if
 - s∈A, t∈B
- Capacity of cut (A,B) is $c(A,B) = \sum c(u,v)$

convenient definitions

- $f^{out}(A) = \sum_{v \in A, w \notin A} f(v,w)$
- $f^{in}(A) = \sum_{v \in A, u \notin A} f(u,v)$

claims

- For any flow **f** and any cut (**A**,**B**),
 - the net flow across the cut equals the total flow: $v(f) = f^{out}(A)$ -fin(A), and
 - the net flow across the cut cannot exceed the capacity of the cut: $f^{out}(A)-f^{in}(A) \leq c(A,B)$
- Corollary:
 - Max flow \leq Min cut

proof of claim

- Consider a set A with s∈A, t∉A
- $f^{out}(A) f^{in}(A) = \sum_{v \in A, w \notin A} f(v, w) \sum_{v \in A, u \notin A} f(u, v)$
- We can add flow values for edges with both endpoints in A to **both** sums and they would cancel out so
- $f^{out}(A) f^{in}(A) =$
- $v(f) = f^{out}(s)$ and $f^{in}(s)=0$

proof of claim

$$\begin{split} \nu(\mathbf{f}) &= \mathbf{f}^{\mathsf{out}}(\mathbf{A}) - \mathbf{f}^{\mathsf{in}}(\mathbf{A}) \\ &\leq \mathbf{f}^{\mathsf{out}}(\mathbf{A}) \\ &= \sum_{\mathbf{v} \in \mathbf{A}, \, \mathbf{w} \notin \mathbf{A}} \mathbf{f}(\mathbf{v}, \mathbf{w}) \\ &\leq \sum_{\mathbf{v} \in \mathbf{A}, \, \mathbf{w} \notin \mathbf{A}} \mathbf{c}(\mathbf{v}, \mathbf{w}) \\ &\leq \sum_{\mathbf{v} \in \mathbf{A}, \, \mathbf{w} \in \mathbf{B}} \mathbf{c}(\mathbf{v}, \mathbf{w}) \\ &= \mathbf{c}(\mathbf{A}, \mathbf{B}) \end{split}$$

max flow/min cut theorem

- Theorem: For any flow f, if G_f has no augmenting path then there is some s-t-cut (A,B) such that v(f)=c(A,B) (proof on next slide)
- We know by previous claims that any flow f' satisfies $v(f') \le c(A,B)$ and we know that F-F runs for finite time until it finds a flow f satisfying conditions of the theorem Therefore for any flow f', $v(f') \le v(f)$
- Corollary:
 - (1) F-F computes a maximum flow in G
 - (2) For any graph G, the value n(f) of a maximum flow = minimum capacity c(A,B) of any s-t-cut in G

proof of the theorem

This is true for **every** edge crossing the cut: $v(f) = f^{out}(A) - f^{in}(A) = c(A,B)$ and $f^{in}(A) = 0$ hence

$$f^{out}(A) = \sum_{\substack{u \in A \\ v \in B}} f(u, v) = \sum_{\substack{u \in A \\ v \in B}} c(u, v) = c(A, B)$$