CSE 421.: Algorithms

Winter 2014
Lecture 18: Network flow

Reading:

bipartite matching

Sections 6.6-6.10

bipartite matching

Given: A bipartite graph G=(V,E)
Def: M c E is a matching in G iff no two edges in
M share a vertex

Goal: Find a matching M in G of maximum
possible size

bipartite matching

2/20/2014

the network flow problem

How much stuff can flow fromstot?

bipartite matching as a special case

Given: Find:

A digraph G = (V,E) A flow function f: E — R s.t. for

Two vertices s tiny all UV:

(source & sink) * 0 <f(u,v)<c(uy)
A capacity ¢(u,v) >0

[Capacity Constraint]
* if u #s,t, we have fout(u)=fn(u)

for each (u,V) e E [Flow Conservation]

(and c(u,v) = 0 for all non-

edges (u,v)) Maximizing total flow n(f) = foui(s)
Notation:

W)= et @Y T M=2 VW)

2/20/2014

bipartite matching as a special case

example: a flow function

flow/capacity, not .66...

O—22 ()25 ()

example: a flow function

greedy algorithm?

* Not shown: f(u,v) if =0
* Note: max flow > 4 since
f is a flow function, with v(f) =4

a brief history of flow

While there is an s — t path in
Pick such a path, p

G

Find c, the min capacity of any edge in p
Subtract ¢ from all capacities on p

Delete edges of capacity O
* This does NOT always find a

max flow:

If pick s b —a —>t
first, flow stuck at 2.
But flow 3 possible.

greed revisited: augmenting paths

| # | year | discoverer(s) bound
[1] 1951 | Dantzig O(n*mU)
[21955 | Ford & Fulkerson O(nmU)
3| 1970 | Dinitz O(nm?)
Edmonds & Karp
7| 1970 | Dinitz On?m)
5| 1972 | Edmonds & Karp O(mlogU)
Dinitz
[6 | 1973 | Dinitz O(nmlogU)
Gabow
7 | 1974 | Karzanov O(n®)
8 | 1977 | Cherkassky O(n®y/m)
9 | 1980 | Galil & Naamad O(nmlog?n)
[10 | 1983 | Sleator & Tarjan O(nmlogn)
[11 | 1986 | Goldberg & Tarjan O(nmlog(n?/m))
12 | 1987 | Ahuja & Orlin O(nm + nlogU)
[13 | 1987 | Ahuja et al. O(nmlog(ny/Iog U/(m + 2))
14 | 1989 | Cheriyan & Hagerup | E(nm + n®log’n)
15 | 1990 | Cheriyan et al. O(n®/logn)
16 | 1990 [Alon O(nm + n®3logn)
17 | 1092 | King et al. O(nm + %)
18 | 1993 | Phillips & Westbrook | O(nm(log,, /, n + log”" * n))
[19 { 1994 | King et al. Onm1ogm/(niogn) ™)
20 | 1997 | Goldberg & Rao O(m*%log(n?/m)logU)
O(n?**mlog(n? /m)logU)
2012 Orlin + King et al. O(nm)

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg
& Rao, FOCS ‘97

@ 212

< (D
@\2/3 1

PORE
/Z<>® = ©
21

Residual Graph

Q 1+1/2

o [

2/2

L

P ONE:
<

2/20/2014

greed revisited: augmenting paths

residual capacity

New Residual Graph

residual graph & augmenting paths

* The residual capacity (w.r.t. f) of (u,v) is
cq(u,v) = c(u,v) - f(u,v) if f(u,v) < ¢(u,v) and
cq(u,v)=f(v,u) if f(v,u)> 0

3/4

* e.g. ¢(s,b)=7; c{(a,x) =1; c{(x,a)=3

a residual network

* The residual graph (w.r.t. f) is the graph
G;=(V,E;), where E;={(u,v) | c{u,v)>0}

— Two kinds of edges
Forward edges
f(u,v)<c(u,v) so c{u,v)=c(u,v)-f(u,v)>0
Backward edges
f(u,v)>0s0 cgv,u) > -f(v,u)=Ff(u,v)>0

* An augmenting path (w.r.t. f) is a simple
s — t path in G;.

3/4

2/20/2014

2/20/2014

an augmenting path augmenting a flow along a path

augment(f,P)
Cp <= Ming, , p C{(U,v)
for each ecP
if e is a forward edge then

3/4

increase f(e) by ¢,
else (e is a backward edge)
decrease f(e) by c,
endif
endfor
return(f)

augmenting a flow claim

If G; has an augmenting path P, then the
function f’=augment(f,P) is a legal flow.

Proof:

f’ and f differ only on the edges of P so only
need to consider such edges (u,v)

proof of claim

2/20/2014

Ford-Fulkerson method

* If (u,v) is a forward edge then

f'(u,v) = f(u,v)+cp < f(u,v)+c(u,v)
= f(u,v)+c(u,v)-f(u,v)

= ¢(u,v)
* If (u,v) is a backward edge then f and f’ differ on
flow along (v,u) instead of (u,v)
f'(v,u) = f(v,u) - cp = f(V,u)- c4u,v)
= f(v,u)-f(v,u)=0

¢ Other conditions like flow conservation still met

observations

Start with f = O for every edge
While G; has an augmenting path, augment.

Questions:
— Does it halt?
— Does it find a maximum flow?
— How fast?

running time

* At every stage the capacities and flow values are
always integers (if they start that way)
* The flow value v(f’) = v(f) + cp > v(f) for
f' = augment(f,P)
— Since edges of residual capacity O do not appear in the
residual graph
* Let € = X5 e c(s,u)
-v(f)<C

— F-F does at most C rounds of augmentation since flows
are integers and increase by at least 1 per step

Forf=0,G;=G

* Finding an augmenting path in G; is graph
search O(n+m)=0(m) time

Augmenting and updating G; is O(n) time
Total O(mC) time

Does is find a maximum flow?

— Need to show that for every flow f that isn’t
maximum G, contains an s-t-path

cuts

convenient definitions

* A partition (A,B) of V is an s-t-cut if
seA, teB

* Capacity of cut (A,B) is c(A,B) = Zc(u,v)

ueA
veB

claims

 FU(A) = 2, a wea F(V,W)

« finA) =2, a uea F(UV)

proof of claim

* For any flow f and any cut (A,B),

— the net flow across the cut equals the total flow:

v(f) = fout(A)-fin(A), and
— the net flow across the cut cannot exceed the
capacity of the cut: fout(A)-fi"(A) < c(A,B)

» Corollary:

Max flow < Min cut L 6 6 CutCap =3
1 Net Flow = 1

oL

CutCap =2
Net Flow = 1

* Consider a set A with s€A, tgA

o fOUt(A)- fin(A) =2,y LaFOVW) -2 a ua F(UY)
* We can add flow values for edges with both endpoints in A
to both sums and they would cancel out so

o fout(A) - fin(A) =

+ v(f) = foui(s) and fi"(s)=0

2/20/2014

proof of claim

2/20/2014

max flow/min cut theorem

v(f) fout(A) - fin(A)

fout(A)

IN

= ZVGA, wgA f(V,W)
< Zyea,wea C(V;W)

< ZveA,weB C(V,W)
=c¢(A,B)

proof of the theorem

LetA={u | JapathinG;fromstou}
B=V-A; seAteB

saturated
f(u,v)=c(u,v)

This is true for every edge crossing the cut:
v(f) = foU(A) - fin(A) = ¢(A,B) and f"(A) = O hence

foU(A) =D f(u,v)=> c(u,v) =c(A,B)

ueA ueA
veB veB

Theorem: For any flow f, if G; has no augmenting
path then there is some s-t-cut (A,B) such that
v(f)=c(A,B) (proof on next slide)

* We know by previous claims that any flow f’ satisfies
v(f’) < ¢(A,B) and we know that F-F runs for finite time
until it finds a flow f satisfying conditions of the theorem
Therefore for any flow #, v(f’) <v(f)

* Corollary:
— (1) F-F computes a maximum flow in G
— (2) For any graph G, the value n(f) of a maximum flow =

minimum capacity ¢(A,B) of any s-t-cut in G

