
2/20/2014

1

CSE 421: Algorithms

Winter 2014
Lecture 18: Network flow

Reading:

Sections 6.6-6.10

bipartite matching

Given: A bipartite graph G=(V,E)

Def: M  E is a matching in G iff no two edges in

M share a vertex

Goal: Find a matching M in G of maximum

possible size

bipartite matching bipartite matching

2/20/2014

2

 How much stuff can flow from s to t ?

the network flow problem

5

6

7

4

3

4

1

5

3

7

6 4

s

a

b

c

x

y

z

t

bipartite matching as a special case

1

1

1

1

1

1

1

1

1

1

1

s

a

b

c

x

y

z

t

bipartite matching as a special case

Given:

A digraph G = (V,E)

Two vertices s,t in V

(source & sink)

A capacity c(u,v)  0

for each (u,v)  E
(and c(u,v) = 0 for all non-

edges (u,v))

Find:

A flow function f: E  R s.t. for
all u,v:

• 0  f(u,v)  c(u,v)
 [Capacity Constraint]

• if u  s,t, we have fout(u)=f in(u)

 [Flow Conservation]

Maximizing total flow n(f) = fout(s)

Notation:

out

e (v,w) E
f (v) f(v,w)

 
 in

e (u,v) E
f (v) f(u,v)

 
 

example: a flow function

s u t
2/2 2/3

flow/capacity, not .66...

2/20/2014

3

• Not shown: f(u,v) if = 0

• Note: max flow  4 since

f is a flow function, with n(f) = 4

example: a flow function

4/5

6

7

3/4

1/3

4

1

5

3/3

7

1/6 1/4

s

a

b

c

x

y

z

t

greedy algorithm?

While there is an s  t path in G
Pick such a path, p

Find c, the min capacity of any edge in p

Subtract c from all capacities on p

Delete edges of capacity 0

• This does NOT always find a max flow:

s
1 a

t

b

2

1

3

2

If pick s b a t

first, flow stuck at 2.

But flow 3 possible.

a brief history of flow

n = # of vertices

m= # of edges

U = Max capacity

Source: Goldberg

& Rao, FOCS ‘97

bound

2012 Orlin + King et al. O(nm)

2

1

1 s

a

b

t

1

2

2

greed revisited: augmenting paths

2/2

1

2/3 s

a

b

t

1

2/2

2

1

1 s

a

b

t

1

2

2

2/2

1/1

1/3 s

a

b

t

1/1

1+1/2

Residual Graph

2/20/2014

4

greed revisited: augmenting paths

2

2 s

a

b

t

2

1

2/2

1/1

1/3 s

a

b

t

1/1

1+1/2

New Residual Graph

1

1

residual capacity

• The residual capacity (w.r.t. f) of (u,v) is
cf(u,v) = c(u,v) - f(u,v) if f(u,v)  c(u,v) and
cf(u,v)=f(v,u) if f(v,u)  0

• e.g. cf(s,b)=7; cf(a,x) = 1; cf(x,a) = 3

4/5

6

7

3/4

1/3

4

1

5

3/3

7

1/6 1/4

s

a

b

c

x

y

z

t

residual graph & augmenting paths

• The residual graph (w.r.t. f) is the graph

 Gf = (V,Ef), where Ef = { (u,v) | cf(u,v)  0 }
– Two kinds of edges

Forward edges

f(u,v)c(u,v) so cf(u,v)=c(u,v)-f(u,v)0

Backward edges

f(u,v)0 so cf(v,u)  -f(v,u)=f(u,v)0

• An augmenting path (w.r.t. f) is a simple

 s  t path in Gf.

a residual network

s

a

b

c

x

y

z

t

4/5

6

7

3/4

1/3

4

1

5

3/3

7

1/6 1/4

s

a

b

c

x

y

z

t

2/20/2014

5

an augmenting path

4

3

1

1

1

6

7

1

2

4

1

5

3

7

5 3

s

a

b

c

x

y

z

t

1

4/5

6

7

3/4

1/3

4

1

5

3/3

7

1/6 1/4

s

a

b

c

x

y

z

t

augmenting a flow along a path

augment(f,P)

cP  min(u,v)P cf(u,v) “bottleneck(P)”

for each eP

if e is a forward edge then

increase f(e) by cP

else (e is a backward edge)

decrease f(e) by cP

endif

endfor

return(f)

augmenting a flow

4

3

1

1

1

6

7

1

2

4

1

5

3

7

5 3

s

a

b

c

x

y

z

t

1

4/5

1/6

7

3/4

1/3

4

1

1/5

3/3

1/7

1/6 4

s

a

b

c

x

y

z

t

4/5

6

7

3/4

1/3

4

1

5

3/3

7

1/6 1/4

s

a

b

c

x

y

z

t

claim

If Gf has an augmenting path P, then the

function f’=augment(f,P) is a legal flow.

Proof:

 f’ and f differ only on the edges of P so only

 need to consider such edges (u,v)

2/20/2014

6

proof of claim

• If (u,v) is a forward edge then

 f’(u,v) = f(u,v)+cP  f(u,v)+cf(u,v)
 = f(u,v)+c(u,v)-f(u,v)

 = c(u,v)

• If (u,v) is a backward edge then f and f’ differ on

flow along (v,u) instead of (u,v)

 f’(v,u) = f(v,u) - cP  f(v,u)- cf(u,v)
 = f(v,u)-f(v,u) = 0

• Other conditions like flow conservation still met

Ford-Fulkerson method

Start with f = 0 for every edge

While Gf has an augmenting path, augment.

Questions:

– Does it halt?

– Does it find a maximum flow?

– How fast?

observations

• At every stage the capacities and flow values are
always integers (if they start that way)

• The flow value n(f’) = n(f) + cP  n(f) for

 f’ = augment(f,P)

– Since edges of residual capacity 0 do not appear in the
residual graph

• Let 𝑪 = 𝒄 𝒔, 𝒖 𝒔,𝒖 ∈𝑬

– n(f)  C

– F-F does at most C rounds of augmentation since flows
are integers and increase by at least 1 per step

running time

• For f = 0, Gf = G

• Finding an augmenting path in Gf is graph
search O(n+m)=O(m) time

• Augmenting and updating Gf is O(n) time

• Total O(mC) time

• Does is find a maximum flow?

– Need to show that for every flow f that isn’t
maximum Gf contains an s-t-path

2/20/2014

7

25

cuts

• A partition (A,B) of V is an s-t-cut if

sA, tB

• Capacity of cut (A,B) is



 
u A
v B

c(A,B) c(u,v)

5

6

7

4

3

4

1

5

3

7

6 4

s

a

b

c

x

y

z

t

{s}

c=18

V-{t}

c=16
{s,b,c}

c=15

5

6

7

3

s

a

b

c

x

y

z

t

{s,x}

c=21

convenient definitions

• fout(A) = SvA, wA f (v,w)

• fin(A) = SvA, uA f (u,v)

27

claims

• For any flow f and any cut (A,B),

– the net flow across the cut equals the total flow:

n(f) = fout(A)-fin(A), and

– the net flow across the cut cannot exceed the

capacity of the cut: fout(A)-fin(A)  c(A,B)

• Corollary:

Max flow  Min cut

1
s

t

1

1

1

1

Cut Cap = 3

Net Flow = 1

Cut Cap = 2

Net Flow = 1

proof of claim

• Consider a set A with sA, tA

• fout(A) - fin(A) =SvA, wA f (v,w) - SvA, uA f (u,v)

• We can add flow values for edges with both endpoints in A
to both sums and they would cancel out so

• fout(A) - fin(A) =

• n(f) = fout(s) and fin(s)=0

2/20/2014

8

proof of claim

 n(f) = fout(A) - fin(A)

  fout(A)

 = SvA, wA f (v,w)

  SvA, wA c(v,w)

  SvA, wB c(v,w)

 = c(A,B)

max flow/min cut theorem

Theorem: For any flow f, if Gf has no augmenting
path then there is some s-t-cut (A,B) such that
n(f)=c(A,B) (proof on next slide)

• We know by previous claims that any flow f’ satisfies

 n(f’)  c(A,B) and we know that F-F runs for finite time

 until it finds a flow f satisfying conditions of the theorem

Therefore for any flow f’, n(f’) n(f)

• Corollary:

– (1) F-F computes a maximum flow in G

– (2) For any graph G, the value n(f) of a maximum flow =

minimum capacity c(A,B) of any s-t-cut in G

proof of the theorem

Let A = { u |  a path in Gf from s to u }

 B = V - A; s  A, t  B

This is true for every edge crossing the cut:

n(f) = fout(A) - fin(A) = c(A,B) and fin(A) = 0 hence

s t

A B

u v

 
 

   out

u A u A
v B v B

f A f u,v c u,v c A,B() () () ()

w

saturated

f(u,v)=c(u,v)

no flow

f(w,u)=0 x

