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CSE 421: Algorithms 

Winter 2014 
Lecture 18:  Network flow 

 

Reading: 

Sections 6.6-6.10 

bipartite matching 

Given:  A bipartite graph G=(V,E)  

Def:  M  E is a matching in G iff no two edges in 

M share a vertex 

 

Goal: Find a matching M in G of maximum 

possible size 

bipartite matching bipartite matching 
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     How much stuff can flow from s to t ? 

the network flow problem 
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bipartite matching as a special case 
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bipartite matching as a special case 

 

 

 

 

 

Given: 

A digraph G = (V,E) 

Two vertices s,t in V 

(source & sink) 

A capacity c(u,v)  0 

for each (u,v)  E 
(and c(u,v) = 0 for all non-

edges (u,v)) 

Find: 

A flow function f: E  R s.t. for 
all u,v: 

• 0  f(u,v)  c(u,v)            
 [Capacity Constraint] 

• if u  s,t, we have fout(u)=f in(u)  

 [Flow Conservation] 
 

Maximizing total flow n(f) = fout(s) 

 
Notation: 

out

e (v,w) E
f (v) f(v,w)

 
 in

e (u,v) E
f (v) f(u,v)

 
 

 

 

 

 

 

example: a flow function 

s u t 
2/2 2/3 

flow/capacity, not .66... 
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• Not shown: f(u,v) if = 0 

• Note:  max flow  4 since 

f is a flow function, with n(f) = 4 

example: a flow function 
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greedy algorithm? 

While there is an s  t path in G 
Pick such a path, p 

Find c, the min capacity of any edge in p 

Subtract c from all capacities on p 

Delete edges of capacity 0 

• This does NOT always find a max flow: 

s 
1 a 
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If pick s b a t  

first, flow stuck at 2. 

But flow 3 possible. 

a brief history of flow 

n = # of vertices 

m= # of edges 

U = Max capacity 

 

 

Source: Goldberg 

& Rao, FOCS ‘97 

bound 

2012     Orlin + King et al.           O(nm) 

2 

1 

1 s 

a 

b 

t 

1 

2 

2 

greed revisited: augmenting paths 

2/2 

1 

2/3 s 

a 

b 

t 

1 

2/2 

2 

1 

1 s 

a 

b 

t 

1 

2 

2 

2/2 

1/1 

1/3 s 

a 

b 

t 

1/1 

1+1/2 

Residual Graph 
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greed revisited: augmenting paths 
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New Residual Graph 

1 

1 

residual capacity 

• The residual capacity (w.r.t. f) of (u,v) is 
cf(u,v) = c(u,v) - f(u,v) if f(u,v)  c(u,v) and 
cf(u,v)=f(v,u) if f(v,u)  0 

 

 

 

 

• e.g. cf(s,b)=7; cf(a,x) = 1; cf(x,a) = 3 
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residual graph & augmenting paths 

• The residual graph (w.r.t. f) is the graph 

    Gf = (V,Ef),    where  Ef = { (u,v) | cf(u,v)  0 } 
– Two kinds of edges  

Forward edges  

f(u,v)c(u,v) so cf(u,v)=c(u,v)-f(u,v)0 

Backward edges  

f(u,v)0 so  cf(v,u)  -f(v,u)=f(u,v)0 

 

• An augmenting path (w.r.t. f) is a simple 

 s  t path in Gf. 

a residual network 
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an augmenting path 
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augmenting a flow along a path 

augment(f,P) 

cP  min(u,v)P cf(u,v)           “bottleneck(P)” 

for each eP 

if e is a forward edge then 

increase f(e) by cP 

else (e is a backward edge) 

decrease f(e) by cP 

endif 

endfor 

return(f) 

augmenting a flow 
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claim 

If Gf has an augmenting path P, then the 

function f’=augment(f,P) is a legal flow. 

 

Proof:  

 f’ and f differ only on the edges of P so only 

 need to consider such edges (u,v) 
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proof of claim 

• If (u,v) is a forward edge then     

 f’(u,v) = f(u,v)+cP  f(u,v)+cf(u,v)                            
   = f(u,v)+c(u,v)-f(u,v)      

   = c(u,v) 

 

• If (u,v) is a backward edge then f and f’ differ on 

flow along (v,u) instead of (u,v)            

 f’(v,u) = f(v,u) - cP   f(v,u)-  cf(u,v)                                
       = f(v,u)-f(v,u) = 0 

 

• Other conditions like flow conservation still met 

Ford-Fulkerson method 

Start with f = 0 for every edge 

While Gf has an augmenting path, augment. 

 

Questions: 

– Does it halt? 

– Does it find a maximum flow? 

– How fast? 

observations 

• At every stage the capacities and flow values are 
always integers (if they start that way) 

• The flow value n(f’) = n(f) + cP  n(f) for  

    f’ =  augment(f,P) 

– Since edges of residual capacity 0 do not appear in the 
residual graph 

• Let 𝑪 =  𝒄 𝒔, 𝒖  𝒔,𝒖 ∈𝑬  

– n(f)  C 

– F-F does at most C rounds of augmentation since flows 
are integers and increase by at least 1 per step 

running time 

• For f = 0, Gf = G 

• Finding an augmenting path in Gf is graph 
search O(n+m)=O(m) time 

• Augmenting and updating Gf is O(n) time 

• Total O(mC) time 

• Does is find a maximum flow? 

– Need to show that for every flow f that isn’t 
maximum Gf contains an s-t-path 
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cuts 

• A partition (A,B) of V is an s-t-cut if  

sA, tB 

• Capacity of cut (A,B) is 



 
u A
v B

c(A,B) c(u,v)
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{s} 

c=18 

V-{t} 

c=16 
{s,b,c} 

c=15 
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{s,x} 

c=21 

convenient definitions 

• fout(A) = SvA, wA f (v,w) 

 

• fin(A) = SvA, uA f (u,v) 
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claims 

• For any flow f and any cut (A,B), 

– the net flow across the cut equals the total flow: 

n(f) = fout(A)-fin(A), and    

– the net flow across the cut cannot exceed the 

capacity of the cut:  fout(A)-fin(A)  c(A,B) 

• Corollary: 

Max flow  Min cut  
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Cut Cap  = 3 

Net Flow = 1 

Cut Cap  = 2 

Net Flow = 1 

proof of claim 

• Consider a set A with sA, tA 

• fout(A) - fin(A) =SvA, wA f (v,w) - SvA, uA f (u,v) 

• We can add flow values for edges with both endpoints in A 
to both sums and they would cancel out so 

 

• fout(A) - fin(A) =  

 

 

 

 

• n(f) = fout(s)  and  fin(s)=0 
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proof of claim 

 n(f) =  fout(A) - fin(A) 

            fout(A)                                           

   = SvA, wA f (v,w)                                  

    SvA, wA c(v,w) 

     SvA, wB c(v,w)                           

    = c(A,B) 

max flow/min cut theorem 

Theorem:  For any flow f, if Gf has no augmenting 
path then there is some s-t-cut (A,B) such that 
n(f)=c(A,B)  (proof on next slide) 

 

• We know by previous claims that any flow f’ satisfies 

 n(f’)  c(A,B) and we know that F-F runs for finite time  

 until it finds a flow f satisfying conditions of the theorem 

Therefore for any flow f’, n(f’) n(f)  

• Corollary:  

– (1) F-F computes a maximum flow in G 

– (2) For any graph G, the value n(f) of a maximum flow = 

minimum capacity c(A,B) of any s-t-cut in G 

proof of the theorem 

Let A = { u |  a path in Gf from s to u } 

   B = V - A;  s  A, t  B 

 

 

 

 

 

 

This is true for every edge crossing the cut:   

n(f) = fout(A) - fin(A) = c(A,B)  and fin(A) = 0 hence       

s t 

A         B 

u v 

 
 

   out

u A u A
v B v B

f A f u,v c u,v c A,B( ) ( ) ( ) ( )

w 

saturated 

f(u,v)=c(u,v) 

no flow 

f(w,u)=0 x 


