CSE 421: Algorithms

Winter 2014

Lecture 18: Network flow
Reading:
Sections 6.6-6.10

bipartite matching

bipartite matching

Given: A bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Def: $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum possible size
bipartite matching

How much stuff can flow from s to t?
bipartite matching as a special case

example: a flow function

- Not shown: $f(u, v)$ if $=0$
- Note: max flow ≥ 4 since f is a flow function, with $v(\mathrm{f})=4$
a brief history of flow

$\mathrm{n}=\#$ of vertices
$\mathrm{m}=\#$ of edges
$\mathrm{m}=$ \# of edges
$\mathrm{U}=$ Max capacity

Source: Goldberg
\& Rao, FOCS ' 97

greedy algorithm?

While there is an $s \rightarrow t$ path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Subtract c from all capacities on p
Delete edges of capacity 0

- This does NOT always find a max flow:

If pick $\mathbf{s} \rightarrow \mathbf{b} \rightarrow \mathbf{a} \rightarrow \mathbf{t}$
first, flow stuck at 2.
But flow 3 possible.
greed revisited: augmenting paths

ϑ
$\sqrt{5}$

\rightarrow (s)
Residual Graph

New Residual Graph
residual graph \& augmenting paths

- The residual graph (w.r.t. f) is the graph $G_{f}=\left(\mathbf{V}, E_{f}\right)$, where $E_{f}=\left\{(\mathbf{u}, \mathbf{v}) \mid c_{f}(\mathbf{u}, \mathbf{v})>0\right\}$
- Two kinds of edges

Forward edges
$f(u, v)<c(u, v)$ so $c_{f}(u, v)=c(u, v)-f(u, v)>0$
Backward edges
$f(u, v)>0$ so $c_{f}(v, u) \geq-f(v, u)=f(u, v)>0$

- An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_{f}.
residual capacity
- The residual capacity (w.r.t. f) of (u,v) is $c_{f}(u, v)=c(u, v)-f(u, v)$ if $f(u, v) \leq c(u, v)$ and $c_{f}(\mathbf{u}, \mathbf{v})=f(\mathbf{v}, \mathbf{u})$ if $f(\mathbf{v}, \mathbf{u})>0$

- e.g. $c_{f}(s, b)=7 ; c_{f}(a, x)=1 ; c_{f}(x, a)=3$
a residual network

augmenting a flow

augmenting a flow along a path
augment(f,P)
$\mathbf{c}_{\mathbf{P}} \leftarrow \min _{(\mathbf{u}, \mathbf{v}) \in \mathbf{P}} \mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) \quad$ "bottleneck (P) "
for each $\mathbf{e} \in \mathbf{P}$
if \mathbf{e} is a forward edge then increase $\mathbf{f}(\mathbf{e})$ by $\mathbf{c}_{\mathbf{p}}$
else (e is a backward edge)
decrease $\mathbf{f}(\mathbf{e})$ by $\mathbf{c}_{\mathbf{p}}$
endif
endfor
return(f)

claim

If G_{f} has an augmenting path P, then the function $f^{\prime}=\operatorname{augment}(f, P)$ is a legal flow.

Proof:
f^{\prime} and f differ only on the edges of P so only need to consider such edges (u, v)

proof of claim

- If (u, v) is a forward edge then

$$
\begin{aligned}
\mathbf{f}^{\prime}(\mathbf{u}, \mathbf{v}) & =f(\mathbf{u}, \mathbf{v})+\mathbf{c}_{\mathbf{p}} \leq f(\mathbf{u}, \mathbf{v})+\mathbf{c}_{f}(\mathbf{u}, \mathbf{v}) \\
& =f(\mathbf{u}, \mathbf{v})+\mathbf{c}(\mathbf{u}, \mathbf{v})-f(\mathbf{u}, \mathbf{v}) \\
& =\mathbf{c}(\mathbf{u}, \mathbf{v})
\end{aligned}
$$

- If (u, v) is a backward edge then f and f^{\prime} differ on flow along (\mathbf{v}, \mathbf{u}) instead of (\mathbf{u}, \mathbf{v})

$$
\mathbf{f}^{\prime}(\mathbf{v}, \mathbf{u})=f(\mathbf{v}, \mathbf{u})-\mathbf{c}_{\mathbf{p}} \geq f(\mathbf{v}, \mathbf{u})-\mathbf{c}_{\mathrm{f}}(\mathbf{u}, \mathbf{v})
$$

$$
=f(\mathbf{v}, \mathbf{u})-f(\mathbf{v}, \mathbf{u})=\mathbf{0}
$$

- Other conditions like flow conservation still met

observations

- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value $v\left(f^{\prime}\right)=v(f)+c_{p}>v(f)$ for
$\mathbf{f}^{\prime}=\operatorname{augment}(f, \mathrm{P})$
- Since edges of residual capacity 0 do not appear in the residual graph
- Let $C=\sum_{(s, u) \in E} c(s, u)$

$-v(f) \leq C$

- F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step

Start with $\mathrm{f}=0$ for every edge
While G_{f} has an augmenting path, augment.

Questions:

- Does it halt?
- Does it find a maximum flow?
- How fast?
running time
- For $f=0, G_{f}=G$
- Finding an augmenting path in G_{f} is graph search $O(n+m)=0(m)$ time
- Augmenting and updating G_{f} is $O(n)$ time
- Total O(mC) time
- Does is find a maximum flow?
- Need to show that for every flow f that isn't maximum G_{f} contains an s-t-path

cuts

- A partition (A, B) of V is an s-t-cut if
$\mathbf{s} \in \mathbf{A}, \mathbf{t} \in \mathbf{B}$
- Capacity of cut (A, B) is $c(A, B)=\sum_{\substack{u \in A \\ v \in B}} c(u, v)$

convenient definitions

- $f^{\text {out }}(A)=\sum_{v \in A, w \notin A} f(v, w)$
- $f(A)=\sum_{v \in A, u \notin A} f(u, v)$

claims

- For any flow f and any cut (A,B),
- the net flow across the cut equals the total flow: $v(f)=f^{\text {out }}(\mathbf{A})-$ fin (A), and
- the net flow across the cut cannot exceed the capacity of the cut: fout (A)-fin $(A) \leq \mathbf{c}(A, B)$
- Corollary:

Max flow \leq Min cut

proof of claim

- Consider a set \mathbf{A} with $\mathbf{s} \in \mathbf{A}, \mathbf{t} \notin \mathbf{A}$
- $\boldsymbol{f o u t}^{\text {out }}(\mathbf{A})-\mathrm{fin}^{\text {in }}(\mathbf{A})=\sum_{\mathrm{v} \in \mathrm{A}, \mathrm{w} \notin \mathrm{A}} f(\mathrm{v}, \mathbf{w})-\Sigma_{\mathrm{v} \in \mathrm{A}, \mathrm{u} \notin \mathrm{A}} f(\mathrm{u}, \mathrm{v})$
- We can add flow values for edges with both endpoints in A to both sums and they would cancel out so
- $\mathrm{fout}^{\text {out }}(\mathbf{A})-\mathrm{f}^{\mathrm{in}}(\mathbf{A})=$
- $v(f)=f o u t(\mathbf{s})$ and $f^{i n}(\mathbf{s})=0$

$$
\begin{aligned}
v(f) & =f^{\text {out }}(A)-f^{\text {in }}(A) \\
& \leq f^{\text {out }}(A) \\
& =\Sigma_{v \in A, w \notin A} f(v, w) \\
& \leq \Sigma_{v \in A, w \notin A} c(v, w) \\
& \leq \Sigma_{v \in A, w \in B} c(v, w) \\
& =\mathbf{c}(A, B)
\end{aligned}
$$

proof of the theorem

This is true for every edge crossing the cut: $v(f)=f^{\text {out }}(A)-f^{i n}(A)=c(A, B)$ and $f^{\text {fin }}(A)=0$ hence

$$
\mathbf{f}^{\text {out }}(\mathbf{A})=\sum_{\substack{\mathbf{u} \in \mathrm{A} \\ \mathbf{v} \in \mathbf{B}}} \mathbf{f}(\mathbf{u}, \mathbf{v})=\sum_{\substack{\mathbf{u} \in \boldsymbol{A} \\ \mathbf{v} \in \mathbf{B}}} \mathbf{c}(\mathbf{u}, \mathbf{v})=\mathbf{c}(\mathbf{A}, \mathbf{B})
$$

max flow/min cut theorem

Theorem: For any flow f, if G_{f} has no augmenting path then there is some s-t-cut (A, B) such that $v(\mathbf{f})=\mathbf{c}(\mathbf{A}, \mathbf{B})$ (proof on next slide)

- We know by previous claims that any flow f' satisfies $v\left(\mathbf{f}^{\prime}\right) \leq \mathbf{c}(\mathbf{A}, \mathbf{B})$ and we know that $\mathrm{F}-\mathrm{F}$ runs for finite time until it finds a flow f satisfying conditions of the theorem Therefore for any flow $\mathrm{f}^{\prime}, \mathrm{v}\left(\mathrm{f}^{\prime}\right) \leq \mathrm{v}(\mathbf{f})$
- Corollary:
- (1) F-F computes a maximum flow in \mathbf{G}
- (2) For any graph G, the value $n(f)$ of a maximum flow = minimum capacity $c(A, B)$ of any $s-t$-cut in G

