CSE 421.: Algorithms

Winter 2014
Lecture 17: Sequence alighment and Bellman-Ford

Reading:
Sections 6.6-6.10

CHsz

W;::;; : -
GGATAT TAAGAATAGGGATATﬁ/

TTACGEEGAATTAATTACCGAT,,

10110101011102100100000
15041 }OTeL0101 0 »¥0T010

recursive solutions

2/19/2014

sequence alignment: edit distance

* Sub-problems: Edit distance problems for all
prefixes of A and B that don’t include all of
both A and B

* Let D(i,j) be the number of edits required to
transform a, a, ... @;into b, b, ... b,

* Clearly D(0,0)=0

* Given:
— Two strings of characters A=a, a, ... a, and
B=b, b, ... b,
* Find:

— The minimum number of edit steps needed to
transform A into B where an edit can be:

—insert a single character
— delete a single character
— substitute one character by another

computing D(n,m)

* Imagine how best sequence handles the
last characters a, and b,

* Think of by b, ... b,, as fixed and we want to
edit a;a, ...a,,. How will the last character
become b,,, ?

2/19/2014

computing D(n,m) computing D(n,m)
* Imagine how best sequence handles the * Imagine how best sequence handles the
last characters a, and b,,, last characters a, and b,
* If best sequence of operations * If best sequence of operations
— deletes a, then D(n,m)= — deletes a, then D(n,m)=D(n-1,m)+1
— inserts b, then D(h,m)= — inserts b, then D(n,m)=D(n,m-1)+1
— replaces a, by b, then —replaces a, by b, then
D(n,m)= D(n,m)=D(n-1,m-1)+1
— matches a, and b,, then — matches a, and b,, then
D(n,m)= D(n,m)=D(n-1,m-1)
recursive algorithm D(n,m) dynamic programming
if n=0 then --b-_1
return (m) forj = 0to m; D(0,j) < j; endfor !
else if m=0 then for i = 1to n; D(i,0) < i; endfor . .
fori=1ton A
return(n) o ;Orj e D(-1,j1) | |D(i-1, j)
else :
. if a;=b;then QAjq |-
if a,=b,, then
replace-cost <— 0
replace-cost < 0 else T
else cost of substitution of a,, by b, (if used) it
replace-cost < 1 D(, j-1) 1 DG,) |
replace-cost < 1 endif . N ,
endif D(i,j) < min{ D(i-1,) +1, | !
return(min{ D(n-1, m) + 1, D(i, j-1) +1, Lo 1
D(n,m-1) + 1, D(i-1, j-1) + replace-cost}
D(n-1, m-1) + replace-cost }) endfor
endfor

2/19/2014

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

A G A CATTG

L 0

O <

< ™

(O

314|565

2

1

G1

A2

G 3

T 4

TS5

A 6

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

A G A CATTG

A G A CATTG

5
5

3|4

2
2

2/19/2014

example run with AGACATTG and GAGTTA example run with AGACATTG and GAGTTA
A G ACATTG AGACATTG

Of1]12 |3 [4]|5]|6 |78 0+ 142434 4<¢ 54647 < 8
Q|1 11112 34|56 7 Q1 11142« 34445464+ 7
>|2| 1l2|1|2|3|4|5]|6 > | 2| 1+2 |1 +2434445< 6
o|3[2l1]2]2]|3][4]|5]s5 o|3|2/1+2|24344+545
=|4]|3/2|2|3|3[3]|4]5 ~ 4| 3[2]2%3[3][34445
=|(5|4[3|3|[3[4]3]3]4 =|(5| a[3[3][3¢4][3[344
>|l6|5/4|3|4[3|4|a]a4 >»le6| 5/a3dal3zdalala

example run with AGACATTG and GAGTTA reading off the operations
* Follow the sequence and use each color of
A G ACATTG arrow to tell you what operation was

0+ 1424344454647« 8 performed.
Q1119243949596 <47 » From the operations can derive an optimal
> i i‘*z 17293949596 alignment / edit sequence
Q 1+2 | 24344545

(A N AGACATTG
yRIEIEAFE I ENER IDE GAG_TTA
S|5] 4[3]3[3¢4(3[344 — —
>|l6| 5|4|34a|3¢44|a]a

computing edit distance on strings of length m and n

* Time:

* Space:

saving space

* Alignment corresponds to a path through the table from
lower right to upper left

— Must pass through the middle column

* Recursively compute the entries for the middle column
from the left
— If we knew the cost of completing each then we could figure out
where the path crossed
— Problem
There are n possible strings to start from.
— Solution
Recursively calculate the right half costs for each entry in this column using
alignments starting at the other ends of the two input strings!
— Can reuse the storage on the left when solving the right hand
problem

2/19/2014

saving space

* To compute the distance values we only need the last two
rows (or columns)

— O(min(m,n)) space
* To compute the alignment/sequence of operations
— seem to need to store all O(mn) pointers/arrow colors
* Nifty divide and conquer variant that allows one to do this
in O(min(m,n)) space and retain O(mn) time

— In practice the algorithm is usually run on smaller chunks of a

large string, e.g. m and n are lengths of genes so a few thousand
characters

Researchers want all alignments that are close to optimal

Basic algorithm is run since the whole table of pointers (2 bits each)
will fit in RAM

— ldeas are neat, though

saving space

A G A CA TTG

A

- lae 2434 4454647 <4
11424 3444546«
F2 |1 29 3545¢
2 | 29 3945«
2F3|3[3g4¢9
3344|334
34| 34 |4

VLILDV D

O PUTT ”RTWPN PHRTO
Q1 Ph PPN
AlbhlO|jO|O | N|©

DI WINSF -

recurrence

AGACATTG

04142434445464748

o[i[1[1424344454647

2 1k2[1 k243444546

o3[2[1F2 24344545

=[a]3[2[2F3[3[34445

S5 4[3[3[3d4(3][344

=6 s[43da]|3dalaa

T(m,n) <cmn+T (q;—l) +T (m - q%)
T(m,1) <cm
T(1,n) <cn

shortest paths with negative edge weights

* We want to grow paths from s to t based on the #
of edges in the path

* Let Cost(s,t,i)=cost of minimum-length path from
s to t using up to i hops.

— Cost(v,t,0) = | O if v=t
o otherwise

— Cost(v,t,) =

2/19/2014

shortest paths with negative edge weights

* Dijsktra’s algorithm failed with negative-cost
edges

— What can we do in this case?
— Negative-cost cycles could result in shortest paths with
length -0
* Suppose no negative-cost cycles in G
— Shortest path from s to t has at most n-1 edges

If not, there would be a repeated vertex which would
create a cycle that could be removed since cycle can’t
have negative cost

shortest paths with negative edge weights

* We want to grow paths from s to t based on the #
of edges in the path

* Let Cost(s,t,i)=cost of minimum-length path from
s to t using up to i hops.

— Cost(v,t,0) = | 0 if v=t
oo otherwise

— Cost(v,t,I) = min{ Cost(v,t,i-1),
min, ,ce(Cyw+Cost(w,t,i-1)) }

Bellman-Ford

* Observe that the recursion for Cost(s,t,i)
doesn’t change t

— Only store an entry for each v and i
Termed OPT(v,i) in the text

* Also observe that to compute OPT(*,i) we
only need OPT(*,i-1)
— Can store a current and previous copy in O(n)
space.

Bellman-Ford

2/19/2014

Bellman-Ford

ShortestPath(G,s,t)
for all veV
OPT[v]<—
OPT[t]«<-O
for i=1 to n-1 do
for all veV do o(mn) time
OPT’[v]«<—min, y)ce (€, +OPT[W])
forallveV do
OPT[v]<—min(OPT’[v],OPT[v])

return OPT([s]

Bellman-Ford

2/19/2014

Bellman-Ford Bellman-Ford

Bellman-Ford Bellman-Ford

Bellman-Ford

2/19/2014

negative cycles

negative cycles

negative cycles

* Claim: There is a negative-cost cycle that can reach t iff for
some vertex veV, Cost(v,t,n)<Cost(v,t,n-1)

* Proof:

* Claim: There is a negative-cost cycle that can reach t iff for
some vertex veV, Cost(v,t,n)<Cost(v,t,n-1)

* Proof:
— We already know that if there aren’t any then we only need paths
of length up to n-1

— For the other direction
The recurrence computes Cost(v,t,i) correctly for any number of
hops i
The recurrence reaches a fixed point if for every veV,
Cost(v,t,i)=Cost(v,t,i-1)
A negative-cost cycle means that eventually some Cost(v,t,i) gets
smaller than any given bound

Can’t have a negative cost cycle if for every veV,
Cost(v,t,n)=Cost(v,t,n-1)

last details

* Can run algorithm and stop early if the OPT and
OPT’ arrays are ever equal
— Even better, one can update only neighbors v of vertices
w with OPT’[w]=OPT[w]
» Can store a successor pointer when we compute
OPT
— Homework assignment

* By running for n steps we can find some vertex v
on a negative cycle and use the successor pointers
to find the cycle

2/19/2014

10

