CSE 421: Algorithms

Winter 2014 Lecture 17: Sequence alignment and Bellman-Ford

Reading: Sections 6.6-6.10

sequence alignment: edit distance

- Given:
 - Two strings of characters $A=a_1 a_2 \dots a_n$ and $B=b_1 b_2 \dots b_m$
- Find:
 - The minimum number of edit steps needed to transform A into B where an edit can be:
 - insert a single character
 - delete a single character
 - substitute one character by another

recursive solutions

- Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B
- Let D(i,j) be the number of edits required to transform $a_1 a_2 \dots a_l$ into $b_1 b_2 \dots b_l$
- Clearly **D(0,0)=0**

computing D(n,m)

- Imagine how best sequence handles the last characters a_n and b_m
- Think of $b_1 b_2 \dots b_m$ as fixed and we want to edit $a_1 a_2 \dots a_n$. How will the last character become b_m ?

computing D(n,m)

- Imagine how best sequence handles the last characters a_n and b_m
- · If best sequence of operations
 - deletes a_n then D(n,m)=
 - inserts **b**_m then **D**(**n**,**m**)=
 - replaces a_n by b_m then D(n,m)=
 - matches a_n and b_m then
 D(n,m)=

computing D(n,m)

- Imagine how best sequence handles the last characters a_n and b_m
- · If best sequence of operations
 - deletes a_n then D(n,m)=D(n-1,m)+1
 - inserts b_m then D(n,m)=D(n,m-1)+1
 - replaces a_n by b_m then D(n,m)=D(n-1,m-1)+1
 - matches a_n and b_m then D(n,m)=D(n-1,m-1)

recursive algorithm D(n,m)

dynamic programming

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

		Α	G	А	С	А	Т	Т	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1					
G	3								
Т	4								
T	5								
A	6								

example run with AGACATTG and GAGTTA

		А	G	А	С	А	Т	Т	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
G	3	2	1	2	2	3	4	5	5
Т	4								
Т	5								
Α	6								

example run with AGACATTG and GAGTTA

		А	G	А	С	A	Т	Т	G
	0					5			
ດ	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
<u>ନ</u>	3	2	1	2	2	3	4	5	5
Т	4	3	2	2	3	3	3	4	5
T	5	4	3	3	3	4	3	3	4
A	6	5	4	3	4	3	4	4	4

example run with AGACATTG and GAGTTA

		A	G	A	С	A	Т	Т	G
	Q.	⊧ 1 <mark>≼</mark>	- 2 <	- 3 <	- 4 <	- 5 <	- 6 <	- 7 <	- 8
G	1.	1	`1 <	2 <	- 3 <	- 4 <	- 5 <	- 6 <	- 7
A	2	1	-2	1	-24	- 3 <	- 4 <	- 5 <	- 6
n	3	2	1	-2	2<	- 3 <	- 4 -	- 5 ◄	- 5
Т	4	3	2	2	- 3	3	3 <	- 4 <	- 5
T	5	4	3	3	3∢	- 4	3	3 <	- 4
Α	6	5	4	3 <	- 4	3 <	- 4	4	4

example run with AGACATTG and GAGTTA

		Α	G	Α	С	A	Т	Т	G
	0	⊢ 1 <u></u> ≼	- 2 <	- 3 <	- 4 <	- 5 <	- 6 <	- 7 <	- 8
G	Ĩ.	1	`1 <	- 2 <	- 3<	- 4 <	- 5 <	- 6 <	- 7
A	2	1	-2	1	-2∢	- 3 <	- 4 <	- 5 <	- 6
G	3	Ž	1	-2	2<	- 3∢	- 4 -	← 5 ◄	- 5
Т	4	3	2	2	- 3	3	3 <	4 <	- 5
Т	5	4	3	3	3<	- 4	3	3 <	- 4
\triangleright	6	5	4	3 <	- 4	3 <	- 4	4	4

reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment / edit sequence

AGACATTG _GAG_TTA

computing edit distance on strings of length \boldsymbol{m} and \boldsymbol{n}

• Time:

• Space:

saving space

- To compute the distance values we only need the last two rows (or columns)
 - O(min(m,n)) space
- To compute the alignment/sequence of operations
 - seem to need to store all O(mn) pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in O(min(m,n)) space and retain O(mn) time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
 - Ideas are neat, though

saving space

- Alignment corresponds to a path through the table from lower right to upper left
 - Must pass through the middle column
- Recursively compute the entries for the middle column from the left
 - If we knew the cost of completing each then we could figure out where the path crossed
 - Problem

There are **n** possible strings to start from.

- Solution
 - Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
- Can reuse the storage on the left when solving the right hand problem

saving space

		А	G	A	С	A	Т	Т	G
	0	⊢ 1 <u></u> €	- 2 <	- 3 <	4 <	- 5 <	- 6 <	- 7 🖌	- 8
G		1	`1 <	- 2 <	- 3<	- 4 <	- 5 <	- 6 <	- 7
A	2	1	-2	1	- 2∢	- 3<	- 4 <	- 5 <	- 6
G	3	Ż	1	-2	2<	- 3 <	- 4 -	- 5 ◄	- 5
Т	4	3	2	2	- 3	3	3 <	- 4 <	- 5
Т	5	4	3	3	3<	- 4	3	3 <	- 4
A	6	5	4	3 <	- 4	3 <	- 4	4	4

recurrence

$$T(m,n) \le cmn + T\left(q,\frac{n}{2}\right) + T\left(m-q,\frac{n}{2}\right)$$

$$T(m,1) \le cm$$

$$T(1,n) \le cn$$

shortest paths with negative edge weights

- We want to grow paths from s to t based on the # of edges in the path
- Let Cost(s,t,i)=cost of minimum-length path from s to t using up to i hops.

```
-\operatorname{Cost}(\mathbf{v},\mathbf{t},\mathbf{0}) = \begin{cases} \mathbf{0} \text{ if } \mathbf{v}=\mathbf{t} \\ \infty \text{ otherwise} \end{cases}
```

- Cost(v,t,i) =

shortest paths with negative edge weights

- Dijsktra's algorithm failed with negative-cost edges
 - What can we do in this case?
 - Negative-cost cycles could result in shortest paths with length - ∞
- · Suppose no negative-cost cycles in G
 - Shortest path from s to t has at most n-1 edges
 If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can't have negative cost

shortest paths with negative edge weights

- We want to grow paths from s to t based on the # of edges in the path
- Let Cost(s,t,i)=cost of minimum-length path from s to t using up to i hops.

 $-\operatorname{Cost}(\mathbf{v},\mathbf{t},\mathbf{0}) = \begin{cases} \mathbf{0} \text{ if } \mathbf{v}=\mathbf{t} \\ \infty \text{ otherwise} \end{cases}$

 $- \operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{i}) = \min\{\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{i-1}),$ min_{(v,w) ∈ E}(c_{vw}+Cost(w,t,i-1)) }

Bellman-Ford

- Observe that the recursion for Cost(s,t,i) doesn't change t
 - Only store an entry for each v and i Termed OPT(v,i) in the text
- Also observe that to compute OPT(*,i) we only need OPT(*,i-1)
 - Can store a current and previous copy in O(n) space.

Bellman-Ford

ShortestPath(G,s,t) for all v∈V OPT[v]←∞ OPT[t]←0 for i=1 to n-1 do for all v∈V do OPT'[v]←min_{(v,w)∈E} (c_{vw}+OPT[w]) for all v∈V do OPT[v]←min(OPT'[v],OPT[v]) return OPT[s]

Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

negative cycles

negative cycles

- Claim: There is a negative-cost cycle that can reach t iff for some vertex v∈V, Cost(v,t,n)<Cost(v,t,n-1)
- Proof:

negative cycles

- Claim: There is a negative-cost cycle that can reach t iff for some vertex v∈V, Cost(v,t,n)<Cost(v,t,n-1)
- Proof:
 - We already know that if there aren't any then we only need paths of length up to n-1
 - For the other direction

The recurrence computes $\mbox{Cost}(v,t,i)$ correctly for \mbox{any} number of hops i

The recurrence reaches a fixed point if for every v∈V, Cost(v,t,i)=Cost(v,t,i-1)

A negative-cost cycle means that eventually some $\mbox{Cost}(v,t,i)$ gets smaller than any given bound

Can't have a negative cost cycle if for every v∈V, Cost(v,t,n)=Cost(v,t,n-1)

2/19/2014

last details

- Can run algorithm and stop early if the OPT and OPT' arrays are ever equal
 - Even better, one can update only neighbors v of vertices w with OPT'[w]≠OPT[w]
- Can store a successor pointer when we compute
 OPT
 - Homework assignment
- By running for **n** steps we can find some vertex **v** on a negative cycle and use the successor pointers to find the cycle