Winter 2014

Lecture 17: Sequence alignment and Bellman-Ford

Reading:
Sections 6.6-6.10
recursive solutions

- Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B
- Let $\mathrm{D}(\mathrm{i}, \mathrm{j})$ be the number of edits required to transform $a_{1} a_{2} \ldots a_{i}$ into $b_{1} b_{2} \ldots b_{j}$
- Clearly $\mathrm{D}(0,0)=0$
- Given:
- Two strings of characters $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{m}$
- Find:
- The minimum number of edit steps needed to transform A into B where an edit can be:
- insert a single character
- delete a single character
- substitute one character by another
- Imagine how best sequence handles the last characters a_{n} and b_{m}
- Think of $b_{1} b_{2} \ldots b_{m}$ as fixed and we want to edit $a_{1} a_{2} \ldots a_{n}$. How will the last character become b_{m} ?

computing $\mathrm{D}(\mathrm{n}, \mathrm{m})$

- Imagine how best sequence handles the last characters a_{n} and b_{m}
- If best sequence of operations
- deletes \mathbf{a}_{n} then $\mathbf{D}(\mathrm{n}, \mathrm{m})=$
- inserts \mathbf{b}_{m} then $\mathbf{D}(\mathrm{n}, \mathrm{m})=$
- replaces $\mathbf{a}_{\mathbf{n}}$ by $\mathbf{b}_{\mathbf{m}}$ then $D(n, m)=$
- matches $\mathbf{a}_{\mathbf{n}}$ and $\mathbf{b}_{\mathbf{m}}$ then $D(n, m)=$
recursive algorithm $D(n, m)$

```
if n=0 then
    return (m)
else if m=0 then
    return(n)
else
    if }\mp@subsup{a}{n}{}=\mp@subsup{b}{m}{}\mathrm{ then
        replace-cost }\leftarrow
        else
            replace-cost }\leftarrow
        endif
        return(min{ D(n-1,m)+1,
            D(n, m-1) + 1,
            D(n-1, m-1) + replace-cost } )
```


computing $\mathrm{D}(\mathrm{n}, \mathrm{m})$

- Imagine how best sequence handles the last characters a_{n} and b_{m}
- If best sequence of operations
- deletes \mathbf{a}_{n} then $\mathrm{D}(\mathrm{n}, \mathrm{m})=\mathbf{D}(\mathrm{n}-1, m)+\mathbf{1}$
- inserts \mathbf{b}_{m} then $\mathbf{D}(\mathbf{n}, \mathrm{m})=\mathbf{D}(\mathrm{n}, \mathrm{m}-\mathbf{1})+\mathbf{1}$
- replaces \mathbf{a}_{n} by \mathbf{b}_{m} then $D(n, m)=D(n-1, m-1)+1$
- matches $\mathbf{a}_{\mathbf{n}}$ and $\mathbf{b}_{\mathbf{m}}$ then $D(n, m)=D(n-1, m-1)$
dynamic programming

	0	\mathbf{A}	G	$\begin{aligned} & \mathbf{A} \\ & 3 \end{aligned}$	\mathbf{C}	$\begin{array}{r} \mathbf{A} \\ 5 \end{array}$	$\begin{gathered} \mathbf{T} \\ 6 \end{gathered}$	$\begin{gathered} \mathbf{T} \\ 7 \end{gathered}$	G 8
0									
G 1									
A 2									
G 3									
T 4									
T 5									
A 6									

example run with AGACATTG and GAGTTA

	A		G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
\square	1	1	1	2	3	4	5	6	7
	2								
Q	3								
\rightarrow	4								
\mapsto	5								
>	6								

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment / edit sequence
AGACATTG
_ GAG_TTA

computing edit distance on strings of length m and n

- Time:
- Space:

saving space

- Alignment corresponds to a path through the table from lower right to upper left
- Must pass through the middle column
- Recursively compute the entries for the middle column from the left
- If we knew the cost of completing each then we could figure out where the path crossed
- Problem

There are n possible strings to start from.

- Solution

Recursively calculate the right half costs for each entry in this column using
alignments starting at the other ends of the two input strings! alignments starting at the other ends of the two input strings!

- Can reuse the storage on the left when solving the right hand problem

saving space

- To compute the distance values we only need the last two rows (or columns)
- $0(\min (m, n))$ space
- To compute the alignment/sequence of operations - seem to need to store all $0(\mathrm{mn})$ pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in $\mathbf{O}(\mathrm{min}(\mathrm{m}, \mathrm{n})$) space and retain $\mathbf{O}(\mathrm{mn})$ time
- In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters
Researchers want all alignments that are close to optimal Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
- Ideas are neat, though

saving space

recurrence

			G				A				
	0-1+2+3+4-5+6+7-8										
\bigcirc		1				3.		5	6		
	2		-2	1		24	3	4	5	5	
	3	${ }_{2}$		-2			35	4	-5		
	4	3	2		$2+$	-3	3		4		
	5	4	3	3		36	4	3		3	
	6	5	4		4			4	4		

$$
\begin{aligned}
& T(m, n) \leq c m n+T\left(q, \frac{n}{2}\right)+T\left(m-q, \frac{n}{2}\right) \\
& T(m, 1) \leq c m \\
& T(1, n) \leq c n
\end{aligned}
$$

shortest paths with negative edge weights

- We want to grow paths from s to t based on the \# of edges in the path
- Let $\operatorname{Cost}(\mathbf{s}, \mathrm{t}, \mathrm{i})=\operatorname{cost}$ of minimum-length path from s to t using up to i hops.
$-\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{0})=\left\{\begin{array}{l}0 \text { if } \mathbf{v}=\mathbf{t} \\ \infty \text { otherwise }\end{array}\right.$
$-\operatorname{Cost}(\mathbf{v}, \mathrm{t}, \mathrm{i})=$
shortest paths with negative edge weights
- Dijsktra's algorithm failed with negative-cost edges
- What can we do in this case?
- Negative-cost cycles could result in shortest paths with length $-\infty$
- Suppose no negative-cost cycles in G
- Shortest path from s to t has at most $n-1$ edges If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can't have negative cost
shortest paths with negative edge weights
- We want to grow paths from s to t based on the \# of edges in the path
- Let $\operatorname{Cost}(\mathbf{s}, \mathrm{t}, \mathrm{i})=\operatorname{cost}$ of minimum-length path from s to t using up to i hops.

$$
\begin{aligned}
& -\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{0})=\left\{\begin{array}{l}
0 \text { if } \mathbf{v}=\mathbf{t} \\
\infty \text { otherwise }
\end{array}\right. \\
& -\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{i})=\underset{\min \left\{\begin{array}{c}
\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{i}-\mathbf{1}),
\end{array}\right.}{\left.\min _{(\mathbf{v}, \mathbf{w}) \in \mathrm{E}}\left(\mathbf{c}_{\mathbf{v w}}+\operatorname{Cost}(\mathbf{w}, \mathbf{t}, \mathbf{i}-\mathbf{1})\right)\right\}}
\end{aligned}
$$

Bellman-Ford

- Observe that the recursion for $\operatorname{Cost}(\mathbf{s}, \mathrm{t}, \mathrm{i})$ doesn't change t
- Only store an entry for each vand i

Termed OPT(v,i) in the text

- Also observe that to compute OPT(*,i) we only need OPT(*,i-1)
- Can store a current and previous copy in O(n) space.

Bellman-Ford

Bellman-Ford

```
ShortestPath(G,s,t)
    for all \(\mathbf{v} \in \mathbf{V}\)
        OPT \([v] \leftarrow \infty\)
    OPT \([\mathrm{t}] \leftarrow 0\)
    for \(\mathbf{i}=1\) to \(\mathrm{n}-1\) do
        for all \(\mathbf{v} \in \mathbf{V}\) do \(\quad \mathbf{O}(\mathbf{m n})\) time
            OPT \(^{\prime}[\mathbf{v}] \leftarrow \min _{(v, w) \in \mathrm{E}}\left(\mathrm{c}_{\mathrm{vw}}+\right.\) OPT \(\left.[\mathrm{w}]\right)\)
        for all \(\mathbf{v} \in \mathbf{V}\) do
            OPT[v] \(\leftarrow \min \left(\mathrm{OPT}^{\prime}[\mathbf{v}]\right.\), OPT \(\left.[\mathbf{v}]\right)\)
        return OPT[s]
```


Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

negative cycles

- Claim: There is a negative-cost cycle that can reach tiff for some vertex $\mathbf{v} \in \mathbf{V}, \operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{n})<\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{n}-\mathbf{1})$
- Proof:

negative cycles

- Claim: There is a negative-cost cycle that can reach t iff for some vertex $\mathbf{v} \in \mathbf{V}, \operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{n})<\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{n}-\mathbf{1})$
- Proof:
- We already know that if there aren't any then we only need paths of length up to $\mathrm{n}-1$
- For the other direction

The recurrence computes Cost(v,t,i) correctly for any number of hops i
The recurrence reaches a fixed point if for every $\mathbf{v} \in \mathbf{V}$, $\operatorname{Cost}(\mathbf{v}, \mathrm{t}, \mathrm{i})=\operatorname{Cost}(\mathbf{v}, \mathrm{t}, \mathrm{i}-1)$
A negative-cost cycle means that eventually some Cost($\mathbf{v , t , i)}$ gets smaller than any given bound

Can't have a negative cost cycle if for every $\mathbf{v} \in \mathbf{V}$, $\operatorname{Cost}(\mathbf{v}, \mathrm{t}, \mathrm{n})=\operatorname{Cost}(\mathbf{v}, \mathrm{t}, \mathrm{n}-\mathbf{1})$

last details

- Can run algorithm and stop early if the OPT and OPT' arrays are ever equal
- Even better, one can update only neighbors v of vertices w with OPT' $[\mathbf{w}] \neq 0 \mathrm{PT}[\mathbf{w}]$
- Can store a successor pointer when we compute OPT
- Homework assignment
- By running for n steps we can find some vertex \mathbf{v} on a negative cycle and use the successor pointers to find the cycle

