CSE 421.: Algorithms

Winter 2014
Lecture 16: Sequence alighment and Bellman-Ford

Reading:
Sections 6.6-6.10

CHsz

Q -— o ZHo
e GATATTAAGAATAGGGATATA?/

TTACGEEGAATTAATTACCGAT,,

10110101011102100100000
15041 }OTeL0101 0 »¥0T010

sequence alignment vs edit distance

2/14/2014

sequence alignment: edit distance

* Sequence Alighment

— Insert corresponds to aligning with a “~” in the first
string
Cost & (inour case 1)
— Delete corresponds to aligning with a “~" in the second
string

Cost & (in our case 1)
— Replacement of an a by a b corresponds to a mismatch
Cost o, (in our case 1 if a#b and 0 if a=b)

* In Computational Biology this alignment algorithm
is attributed to Smith & Waterman

* Given:
— Two strings of characters A=a, a, ... a, and
B=b, b, ... b,
* Find:

— The minimum number of edit steps needed to
transform A into B where an edit can be:

—insert a single character
— delete a single character
— substitute one character by another

applications

» "diff" utility - where do two files differ

* Version control & patch distribution -
save/send only changes

* Molecular biology

— Similar sequences often have similar origin and
function

— Similarity often recognizable despite millions or
billions of years of evolutionary divergence

2/14/2014

Growth of GenBank recursive solutions

14 15000

o 13500 * Sub-problems: Edit distance problems for all
12000 prefixes of A and B that don’t include all of
10 - 10500 both A and B

9000

7500

* Let D(i,j) be the number of edits required to
transform a, a, ... a;into b, b, ... b,

6000

Sequences (millions)

3000 ® Clearly D(0,0)=0

1500

Base Pairs of DNA (millions)

I Base Pairs
241 |=—e—=Sequences

[o e o oy o oo e o e e 0
1982 1985 1988 1991 1994 1997 2000

computing D(n,m) computing D(n,m)
* Imagine how best sequence handles the * Imagine how best sequence handles the
last characters a, and b, last characters a, and b,
* If best sequence of operations * If best sequence of operations
— deletes a, then D(n,m)= — deletes a, then D(n,m)=D(n-1,m)+1
— inserts b, then D(n,m)= — inserts b,,, then D(n,m)=D(n,m-1)+1
—replaces a, by by, then —replaces a, by b, then
D(n,m)= D(n,m)=D(n-1,m-1)+1
— matches a, and b, then — matches a, and b, then
D(n,m)= D(n,m)=D(n-1,m-1)

2/14/2014

recursive algorithm D(n,m) dynamic programming
if n=0 then
return (m) for j = 0 to m; D(0,j) < j; endfor . .
else if m=0 then for i = 1to n; D(i,0) < i; endfor . .
fori=1ton
t — —
e|sere e forj=1tom D(-1,j-1) D(i-1,J)
if a.=b_. then if a;=b; then Qg f---
replace-cost < 0 elsereplace-cost <0 l
else cost of substitution of a,, by b, (if used) - -t~
replace-cost <— 1 DG, j-1) 1D, j) :
replace-cost «— 1 endif . - I
endif D(ij) <~ min { D(i-1,j)+1, | !
return(min{ D(n-1, m) + 1, D(i, j-1) +1, Lo 1
D(h,m-1)+ 1, D(i-1, j-1) + replace-cost}
D(n-1, m-1) + replace-cost }) endfor
endfor
example run with AGACATTG and GAGTTA example run with AGACATTG and GAGTTA
A G A C A T T G
0 1 2 3 4 5 6 7 8 A G A CA TTG
0 0| 1(2 (3 [4]|5|6 |78
Q|1 11|12 |3(4|5|6 |7
G1 N
A2 Q|3
G 3 -~ | 4
T4 =[5
> | 6
TS5
A6

2/14/2014

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

A G A CATTG

A G A CATTG

314|565

2

1

314|565

2

1

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

A G A CATTG

A G A CATTG

ol~|O|w|w| | <
UBARABRABRAR]
~lo|w|w| s o<
UBRABA RSB
olb|t|t|m|o| <
ARABAB ¥
vt |[o|o|o||m
VTV VTV v
<t|lo | NN oo <
N P l ,
vivi]" M v
oo ||t o
yT¥ v

N | N HFNFo
; l

Al | Adod o <+ 10
U
Otid d-m st dind ©
G AGTTA
o~ |Oo|w|w| | <
~No|w|w| | o<
olv|t|t|m|m| <
vt |o|o|o||m
<t|lm NN oo
ol AN N m|om
Nl | NN o<
Al |H|N| ™| |
old|N|m|<|w|©
G AGTTA

example run with AGACATTG and GAGTTA

A G A CA T T G
- la 2434 4454647 <4
11142« 3444546«
2 |1 ¥29 39445«
F2 | 29 39 4 ¥5¢
2 3|3 [344¢9
3| 3¢44[3]34
344|394 |4

A

VLLOSV D
O POTT BT WOPN PHTO
UTPD PW PN

I WINSI -
Al |OO| N|0

saving space

rreading off the operations

* To compute the distance values we only need the last two
rows (or columns)
— O(min(m,n)) space

* To compute the alignment/sequence of operations
— seem to need to store all O(mn) pointers/arrow colors

* Nifty divide and conquer variant that allows one to do this
in O(min(m,n)) space and retain O(mn) time
— In practice the algorithm is usually run on smaller chunks of a

large string, e.g. m and n are lengths of genes so a few thousand
characters

Researchers want all alignments that are close to optimal

Basic algorithm is run since the whole table of pointers (2 bits each)
will fit in RAM

— ldeas are neat, though

* Follow the sequence and use each color of
arrow to tell you what operation was
performed.

* From the operations can derive an optimal
alignment

AGACATTG
_GAG_TTA

saving space

* Alignment corresponds to a path through the table from
lower right to upper left

— Must pass through the middle column

* Recursively compute the entries for the middle column
from the left
— If we knew the cost of completing each then we could figure out
where the path crossed
— Problem
There are n possible strings to start from.
— Solution
Recursively calculate the right half costs for each entry in this column using
alignments starting at the other ends of the two input strings!
— Can reuse the storage on the left when solving the right hand
problem

2/14/2014

shortest paths with negative edge weights

* Dijsktra’s algorithm failed with negative-cost
edges
— What can we do in this case?

— Negative-cost cycles could result in shortest paths with

length -co
* Suppose ho negative-cost cycles in G

— Shortest path from s to t has at most n-1 edges

If not, there would be a repeated vertex which would
create a cycle that could be removed since cycle can’t
have negative cost

shortest paths with negative edge weights

shortest paths with negative edge weights

* We want to grow paths from s to t based
on the # of edges in the path
* Let Cost(s,t,i)=cost of minimum-length
path from s to t using up to i hops.
— Cost(v,t,0)= { 0 if v=t
oo otherwise

— Cost(v,t,i)=min{ Cost(v,t,i-1),

* We want to grow paths from s to t based
on the # of edges in the path

* Let Cost(s,t,i)=cost of minimum-length
path from s to t using up to i hops.
— Cost(v,t,0) ={ 0if v=t
oo otherwise

— Cost(v,t,i) =

Bellman-Ford

* Observe that the recursion for Cost(s,t,i)
doesn’t change t

— Only store an entry for each v and i
Termed OPT(v,i) in the text
* Also observe that to compute OPT(*,i) we
only need OPT(*,i-1)
— Can store a current and previous copy in O(n)
space.

2/14/2014

Bellman-Ford

negative cycles

ShortestPath(G,s,t)
for allveV
OPT[v]<«—©
OPT[t]<0
fori=1to n-1do

forallveV do O(mn) time
oPT’ [V]<_min(v,w)eE (cvw+0PT[W])

forallveV do
OPT[v]<—min(OPT’[v],OPT[v])

return OPT[s]

negative cycles

* Claim: There is a negative-cost cycle that can reach t iff for
some vertex veV, Cost(v,t,n)<Cost(v,t,n-1)

* Proof:

last details

* Claim: There is a negative-cost cycle that can reach t iff for
some vertex veV, Cost(v,t,n)<Cost(v,t,n-1)

* Proof:
— We already know that if there aren’t any then we only need paths
of length up to n-1

— For the other direction
The recurrence computes Cost(v,t,i) correctly for any number of
hops i
The recurrence reaches a fixed point if for every veV,
Cost(v,t,i)=Cost(v,t,i-1)
A negative-cost cycle means that eventually some Cost(v,t,i) gets
smaller than any given bound

Can’t have a negative cost cycle if for every veV,
Cost(v,t,n)=Cost(v,t,n-1)

* Can run algorithm and stop early if the OPT and
OPT arrays are ever equal
— Even better, one can update only neighbors v of vertices
w with OPT’ [w]=OPT[w]
* Can store a successor pointer when we compute
OPT

— Homework assignment

* By running for step n we can find some vertex v on
a negative cycle and use the successor pointers to
find the cycle

2/14/2014

2/14/2014

Bellman-Ford Bellman-Ford

Bellman-Ford Bellman-Ford

Bellman-Ford

2/14/2014

Bellman-Ford

Bellman-Ford

Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
 Update distances in reverse order of topological sort
+ Only one pass through vertices required

* O(n+m) time

o.. o
‘G)Q X Ag
oY
@4(5 “““““ & ©
Y

