
2/14/2014

1

CSE 421: Algorithms

Winter 2014
Lecture 16: Sequence alignment and Bellman-Ford

Reading:

Sections 6.6-6.10

sequence alignment: edit distance

• Given:

– Two strings of characters A=a1 a2 ... an and

B=b1 b2 ... bm

• Find:

– The minimum number of edit steps needed to

transform A into B where an edit can be:

– insert a single character

– delete a single character

– substitute one character by another

sequence alignment vs edit distance

• Sequence Alignment

– Insert corresponds to aligning with a “–” in the first
string

Cost d (in our case 1)

– Delete corresponds to aligning with a “–” in the second
string

Cost d (in our case 1)

– Replacement of an a by a b corresponds to a mismatch

Cost aab (in our case 1 if ab and 0 if a=b)

• In Computational Biology this alignment algorithm
is attributed to Smith & Waterman

applications

• "diff" utility – where do two files differ

• Version control & patch distribution –

save/send only changes

• Molecular biology

– Similar sequences often have similar origin and

function

– Similarity often recognizable despite millions or

billions of years of evolutionary divergence

2/14/2014

2

5

recursive solutions

• Sub-problems: Edit distance problems for all

prefixes of A and B that don’t include all of

both A and B

• Let D(i,j) be the number of edits required to

transform a1 a2 ... ai into b1 b2 ... bj

• Clearly D(0,0)=0

computing D(n,m)

• Imagine how best sequence handles the

last characters an and bm

• If best sequence of operations

– deletes an then D(n,m)=

– inserts bm then D(n,m)=

– replaces an by bm then

D(n,m)=

– matches an and bm then

D(n,m)=

computing D(n,m)

• Imagine how best sequence handles the

last characters an and bm

• If best sequence of operations

– deletes an then D(n,m)=D(n-1,m)+1

– inserts bm then D(n,m)=D(n,m-1)+1

– replaces an by bm then

D(n,m)=D(n-1,m-1)+1

– matches an and bm then

D(n,m)=D(n-1,m-1)

2/14/2014

3

recursive algorithm D(n,m)

if n=0 then

return (m)

else if m=0 then

return(n)

else

if an=bm then

replace-cost  0

else

replace-cost  1

endif

return(min{ D(n-1, m) + 1,

 D(n, m-1) + 1,

 D(n-1, m-1) + replace-cost })

cost of substitution of an by bm (if used)

for j = 0 to m; D(0,j)  j; endfor

for i = 1 to n; D(i,0)  i; endfor

for i = 1 to n

for j = 1 to m

if ai=bj then

replace-cost  0

else

replace-cost  1

endif

D(i,j)  min { D(i-1, j) + 1,
 D(i, j-1) + 1,
 D(i-1, j-1) + replace-cost}

endfor

endfor

dynamic programming

D(i-1, j-1)

D(i-1, j)

D(i, j-1)

D(i, j)

ai

bj

ai-1

bj-1

. . .
. . .

…

…

. . .
. . .

example run with AGACATTG and GAGTTA

 A G A C A T T G

0 1 2 3 4 5 6 7 8

 0

G 1

A 2

G 3

T 4

T 5

A 6

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2

3

4

5

6

2/14/2014

4

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1

4

5

6

3

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4

5

6

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

2/14/2014

5

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

rreading off the operations

• Follow the sequence and use each color of

arrow to tell you what operation was

performed.

• From the operations can derive an optimal

alignment

 A G A C A T T G

 _ G A G _ T T A

saving space

• To compute the distance values we only need the last two
rows (or columns)

– O(min(m,n)) space

• To compute the alignment/sequence of operations

– seem to need to store all O(mn) pointers/arrow colors

• Nifty divide and conquer variant that allows one to do this
in O(min(m,n)) space and retain O(mn) time

– In practice the algorithm is usually run on smaller chunks of a
large string, e.g. m and n are lengths of genes so a few thousand
characters

Researchers want all alignments that are close to optimal

Basic algorithm is run since the whole table of pointers (2 bits each)
will fit in RAM

– Ideas are neat, though

saving space

• Alignment corresponds to a path through the table from
lower right to upper left

– Must pass through the middle column

• Recursively compute the entries for the middle column
from the left

– If we knew the cost of completing each then we could figure out
where the path crossed

– Problem

There are n possible strings to start from.

– Solution
Recursively calculate the right half costs for each entry in this column using
alignments starting at the other ends of the two input strings!

– Can reuse the storage on the left when solving the right hand
problem

2/14/2014

6

shortest paths with negative edge weights

• Dijsktra’s algorithm failed with negative-cost

edges

– What can we do in this case?

– Negative-cost cycles could result in shortest paths with

length -

• Suppose no negative-cost cycles in G

– Shortest path from s to t has at most n-1 edges

If not, there would be a repeated vertex which would
create a cycle that could be removed since cycle can’t
have negative cost

shortest paths with negative edge weights

• We want to grow paths from s to t based

on the # of edges in the path

• Let Cost(s,t,i)=cost of minimum-length

path from s to t using up to i hops.

– Cost(v,t,0) = 0 if v=t

  otherwise

– Cost(v,t,i) =

shortest paths with negative edge weights

• We want to grow paths from s to t based

on the # of edges in the path

• Let Cost(s,t,i)=cost of minimum-length

path from s to t using up to i hops.

– Cost(v,t,0)= 0 if v=t

  otherwise

– Cost(v,t,i)=min{ Cost(v,t,i-1),

 min(v,w)E(cvw+Cost(w,t,i-1)) }

Bellman-Ford

• Observe that the recursion for Cost(s,t,i)

doesn’t change t

– Only store an entry for each v and i

Termed OPT(v,i) in the text

• Also observe that to compute OPT(*,i) we

only need OPT(*,i-1)

– Can store a current and previous copy in O(n)

space.

2/14/2014

7

Bellman-Ford

ShortestPath(G,s,t)

for all vV

OPT[v]

OPT[t]0

for i=1 to n-1 do

for all vV do

 OPT’[v]min(v,w)E (cvw+OPT[w])

for all vV do

OPT[v]min(OPT’[v],OPT[v])

O(mn) time

return OPT[s]

negative cycles

• Claim: There is a negative-cost cycle that can reach t iff for
some vertex vV, Cost(v,t,n)Cost(v,t,n-1)

• Proof:

negative cycles

• Claim: There is a negative-cost cycle that can reach t iff for
some vertex vV, Cost(v,t,n)Cost(v,t,n-1)

• Proof:

– We already know that if there aren’t any then we only need paths
of length up to n-1

– For the other direction

The recurrence computes Cost(v,t,i) correctly for any number of
hops i

The recurrence reaches a fixed point if for every vV,
Cost(v,t,i)=Cost(v,t,i-1)

A negative-cost cycle means that eventually some Cost(v,t,i) gets
smaller than any given bound

Can’t have a negative cost cycle if for every vV,
 Cost(v,t,n)=Cost(v,t,n-1)

last details

• Can run algorithm and stop early if the OPT and
OPT’ arrays are ever equal

– Even better, one can update only neighbors v of vertices
w with OPT’[w]OPT[w]

• Can store a successor pointer when we compute
OPT

– Homework assignment

• By running for step n we can find some vertex v on
a negative cycle and use the successor pointers to
find the cycle

2/14/2014

8

Bellman-Ford





 



t

6

2

- 4

5

-2

-3
8

7

9

7

Bellman-Ford



0

 



t

6

2

- 4

5

-2

-3
8

7

9

7

Bellman-Ford



0

7 

6

t

6

2

- 4

5

-2

-3
8

7

9

7

Bellman-Ford

4

0

7 2

6

t

6

2

- 4

5

-2

-3
8

7

9

7

2/14/2014

9

Bellman-Ford

4

0

7 2

2

t

6

2

- 4

5

-2

-3
8

7

9

7

Bellman-Ford

4

0

7 -2

2

t

6

2

- 4

5

-2

-3
8

7

9

7

Bellman-Ford

4

0

7 -2

2

t

6

2

- 4

5

-2

-3
8

7

9

7

Bellman-Ford with a DAG

1

4
3

12

10

8

9

11

13

14

5

6

7

2

Edges only go from lower to higher-numbered vertices

• Update distances in reverse order of topological sort

• Only one pass through vertices required

• O(n+m) time

