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CSE 421: Algorithms 

Winter 2014 
Lecture 16:  Sequence alignment and Bellman-Ford 

 

Reading: 

Sections 6.6-6.10 

sequence alignment:  edit distance 

• Given: 

– Two strings of characters A=a1 a2 ... an and 

B=b1 b2 ... bm 

• Find:  

– The minimum number of edit steps needed to 

transform A into B where an edit can be: 

– insert a single character 

– delete a single character 

– substitute one character by another 

sequence alignment vs edit distance 

• Sequence Alignment 

– Insert corresponds to aligning with a “–” in the first 
string 

Cost d  (in our case 1) 

– Delete corresponds to aligning with a “–” in the second 
string 

Cost d (in our case 1) 

– Replacement of an a by a b corresponds to a mismatch 

Cost aab (in our case 1 if ab and 0 if a=b) 

• In Computational Biology this alignment algorithm 
is attributed to Smith & Waterman 

applications 

• "diff" utility – where do two files differ 

• Version control & patch distribution – 

save/send only changes 

• Molecular biology 

– Similar sequences often have similar origin and 

function 

– Similarity often recognizable despite millions or 

billions of years of evolutionary divergence 
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recursive solutions 

• Sub-problems: Edit distance problems for all 

prefixes of A and B that don’t include all of 

both A and B 

 

• Let D(i,j) be the number of edits required to 

transform a1 a2 ... ai into     b1 b2 ... bj 

 

• Clearly D(0,0)=0 

 

computing D(n,m) 

• Imagine how best sequence handles the 

last characters an and bm 

• If best sequence of operations 

– deletes an then D(n,m)= 

– inserts bm then D(n,m)= 

– replaces an by bm then                                         

D(n,m)= 

– matches an and bm then                          

D(n,m)= 

computing D(n,m) 

• Imagine how best sequence handles the 

last characters an and bm 

• If best sequence of operations 

– deletes an then D(n,m)=D(n-1,m)+1 

– inserts bm then D(n,m)=D(n,m-1)+1 

– replaces an by bm then                                         

D(n,m)=D(n-1,m-1)+1 

– matches an and bm then                          

D(n,m)=D(n-1,m-1) 
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recursive algorithm D(n,m) 

if  n=0  then 

return (m) 

else if  m=0  then 

return(n) 

else 

if  an=bm  then  

replace-cost  0 

else 

replace-cost  1 

endif 

return(min{  D(n-1, m) + 1,                                                                                

          D(n, m-1) + 1,                                                              

                     D(n-1, m-1) + replace-cost } ) 

cost of substitution of an by bm (if used) 

for j = 0 to m;  D(0,j)  j; endfor 

for i = 1 to n;  D(i,0)  i; endfor 

for i = 1 to n 

for j = 1 to m 

if  ai=bj then  

replace-cost  0 

else 

replace-cost  1 

endif 

D(i,j)   min {  D(i-1, j) + 1,                                                                                 
                       D(i, j-1) + 1,                                                                    
    D(i-1, j-1) + replace-cost} 

endfor 

endfor 

dynamic programming 

D(i-1, j-1) 
 

 

 

D(i-1, j) 
 

 

D(i, j-1) 
 

 

D(i, j) 

 

 
ai 

bj 

ai-1 

bj-1 

. . . 
. . . 

… 

… 

. . . 
. . . 

example run with AGACATTG  and GAGTTA 

         A       G      A      C       A       T       T      G 

0       1       2      3      4       5       6       7      8 

    0 

G  1 

A  2 

G  3 

T  4 

T  5 

A  6 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2 

3 

4 

5 

6 
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example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1 

4 

5 

6 

3 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4 

5 

6 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4      3    2     2      3     3     3     4      5 

5      4    3     3      3     4     3     3      4                   

6      5    4     3      4     3     4     4      4 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4      3    2     2      3     3     3     4      5 

5      4    3     3      3     4     3     3      4                   

6      5    4     3      4     3     4     4      4 
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example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4      3    2     2      3     3     3     4      5 

5      4    3     3      3     4     3     3      4                   

6      5    4     3      4     3     4     4      4 

rreading off the operations 

• Follow the sequence and use each color of 

arrow to tell you what operation was 

performed. 

• From the operations can derive an optimal 

alignment 

  A G A C A T T G 

  _  G A  G _ T T A 

  

 

saving space 

• To compute the distance values we only need the last two 
rows (or columns) 

– O(min(m,n)) space 

• To compute the alignment/sequence of operations  

– seem to need to store all O(mn) pointers/arrow colors 

• Nifty divide and conquer variant that allows one to do this 
in O(min(m,n)) space and retain O(mn) time 

– In practice the algorithm is usually run on smaller chunks of a 
large string, e.g. m and n are lengths of genes so a few thousand 
characters 

Researchers want all alignments that are close to optimal 

Basic algorithm is run since the whole table of pointers  (2 bits each) 
will fit in RAM 

– Ideas are neat, though 

saving space 

• Alignment corresponds to a path through the table from 
lower right to upper left 

– Must pass through the middle column 

• Recursively compute the entries for the middle column 
from the left  

– If we knew the cost of completing each then we could figure out 
where the path crossed 

– Problem 

There are n possible strings to start from. 

– Solution 
Recursively calculate the right half costs for each entry in this column using 
alignments starting at the other ends of the two input strings! 

– Can reuse the storage on the left when solving the right hand 
problem 
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shortest paths with negative edge weights 

• Dijsktra’s algorithm failed with negative-cost 

edges 

– What can we do in this case? 

– Negative-cost cycles could result in shortest paths with 

length - 

• Suppose no negative-cost cycles in G 

– Shortest path from s to t has at most n-1 edges 

If not, there would be a repeated vertex which would 
create a cycle that could be removed since cycle can’t 
have negative cost 

shortest paths with negative edge weights 

• We want to grow paths from s to t based 

on the # of edges in the path 

• Let Cost(s,t,i)=cost of minimum-length 

path from s to t using up to i hops. 

– Cost(v,t,0) =    0 if v=t  

                             otherwise 
     

– Cost(v,t,i) = 

shortest paths with negative edge weights 

• We want to grow paths from s to t based 

on the # of edges in the path 

• Let Cost(s,t,i)=cost of minimum-length 

path from s to t using up to i hops. 

– Cost(v,t,0)=    0 if v=t  

                            otherwise 
     

– Cost(v,t,i)=min{ Cost(v,t,i-1),                         

                       min(v,w)E(cvw+Cost(w,t,i-1)) } 

Bellman-Ford 

• Observe that the recursion for Cost(s,t,i) 

doesn’t change t 

– Only store an entry for each v and i 

Termed OPT(v,i) in the text 

• Also observe that to compute OPT(*,i) we 

only need OPT(*,i-1) 

– Can store a current and previous copy in O(n) 

space. 
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Bellman-Ford 

ShortestPath(G,s,t) 

for all vV   

OPT[v] 

OPT[t]0 

for i=1 to n-1 do 

for all vV do 

   OPT’[v]min(v,w)E (cvw+OPT[w]) 

for all vV do 

OPT[v]min(OPT’[v],OPT[v]) 

O(mn) time 

return OPT[s] 

negative cycles 

• Claim: There is a negative-cost cycle that can reach t iff for 
some vertex vV,  Cost(v,t,n)Cost(v,t,n-1) 

• Proof:  
 

negative cycles 

• Claim: There is a negative-cost cycle that can reach t iff for 
some vertex vV,  Cost(v,t,n)Cost(v,t,n-1) 

• Proof:  

– We already know that if there aren’t any then we only need paths 
of length up to n-1 

– For the other direction 

The recurrence computes Cost(v,t,i) correctly for any number of 
hops i 

The recurrence reaches a fixed point if for every vV,  
Cost(v,t,i)=Cost(v,t,i-1)  

A negative-cost cycle means that eventually some Cost(v,t,i) gets 
smaller than any given bound 

Can’t have a negative cost cycle if for every vV, 
 Cost(v,t,n)=Cost(v,t,n-1) 

 
 

last details 

• Can run algorithm and stop early if the OPT and 
OPT’ arrays are ever equal 

– Even better, one can update only neighbors v of vertices 
w with OPT’[w]OPT[w] 

• Can store a successor pointer when we compute 
OPT 

– Homework assignment 

 

• By running for step n we can find some vertex v on 
a negative cycle and use the successor pointers to 
find the cycle 
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Bellman-Ford 
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Bellman-Ford 
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Bellman-Ford 
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Bellman-Ford 
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Bellman-Ford 
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Bellman-Ford with a DAG 

1 

4 
3 

12 

10 

8 

9 

11 
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14 

5 

6 

7 

2 

Edges only go from lower to higher-numbered vertices 

• Update distances in reverse order of topological sort 

• Only one pass through vertices required 

• O(n+m) time 


