CSE 421: Algorithms

Winter 2014 Lecture 15: RNA secondary structure, sequence alignment

Reading: Sections 6.3-6.7

segmented least squares

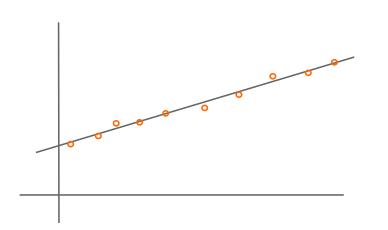
Least Squares

Given a set P of n points in the plane
 p₁=(x₁,y₁),...,p_n=(x_n,y_n) with x₁<...< x_n determine a line L given by y=ax+b that optimizes the totaled 'squared error'

 $Error(L,P) = \sum_{i} (y_i - ax_i - b)^2$

- A classic problem in statistics
- Optimal solution is known (see text for closed form)
 Call this line(P) and its error error(P)

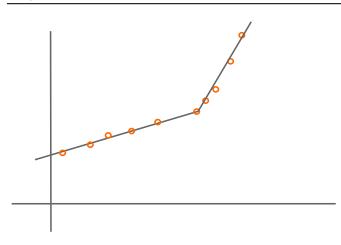
review: least squares

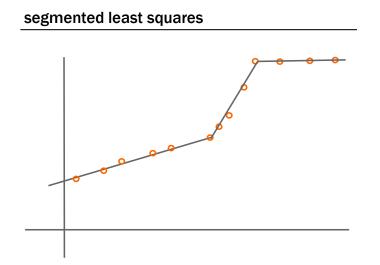


segmented least squares

What if data seems to follow a piece-wise linear model?

segmented least squares





segmented least squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose n-1 pieces we could fit with 0 error
 Not fair
- Add a penalty of C times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

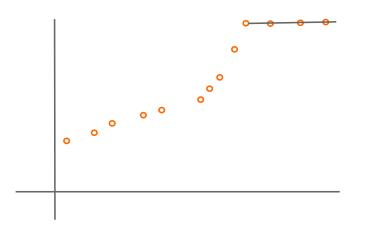
segmented least squares

Recursive idea

- If we knew the point \mathbf{p}_{j} where the **last** line segment began then we could solve the problem optimally for points $\mathbf{p}_{1},...,\mathbf{p}_{j}$ and combine that with the last segment to get a global optimal solution

Let OPT(i) be the optimal penalty for points $\{p_1,...,p_i\}$ Total penalty for this solution would be Error($\{p_i,...,p_n\}$) + C + OPT(j-1)

segmented least squares



segmented least squares

Recursive idea

- We don't know which point is **p**_I
- But we do know that <mark>1≤j≤n</mark>
- The optimal choice will simply be the best among these possibilities
- Therefore:

segmented least squares

Recursive idea

- We don't know which point is pi

But we do know that 1≤j≤n

The optimal choice will simply be the best among these possibilities

- Therefore:

0PT(**n**)

 $= \min_{1 \le j \le n} \left\{ \operatorname{Error}(\{p_j, \dots, p_n\}) + C + \operatorname{OPT}(j-1) \right\}$

dynamic programming solution

```
\begin{array}{l} \text{SegmentedLeastSquares(n)} \\ \text{array OPT[0,...,n], Begin[1,...,n]} \\ \text{OPT[0]} \leftarrow 0 \\ \text{for i=1 to n} \\ \text{OPT[i]} \leftarrow \text{Error}\{(p_1,...,p_l)\} + C \\ \text{Begin[i]} \leftarrow 1 \\ \text{for j=2 to i-1} \\ e \leftarrow \text{Error}\{(p_1,...,p_l)\} + C + \text{OPT[j-1]} \\ \text{if } e < \text{OPT[i] then} \\ \text{OPT[i]} \leftarrow e \\ \text{Begin[i]} \leftarrow j \\ endif \\ endfor \\ endfor \\ return(OPT[n]) \end{array}
```

knapsack (subset-sum) problem

- Given:
 - integer W (knapsack size)
 - -n object sizes x_1, x_2, \dots, x_n
- Find:
 - $\begin{array}{ll} \mbox{ Subset } \boldsymbol{S} \mbox{ of } \{ \boldsymbol{1}, ..., n \} \mbox{ such that } & \sum_{i \in \boldsymbol{S}} \boldsymbol{x}_i \leq \boldsymbol{W} \\ \mbox{ but } \sum_{i \in \boldsymbol{S}} \boldsymbol{x}_i \mbox{ is as large as possible } \end{array}$

recursive algorithm

 Let K(n,W) denote the problem to solve for W and x₁, x₂, ..., x_n

recursive algorithm

- Let K(n,W) denote the problem to solve for W and x₁, x₂, ..., x_n
- For **n**>**0**,
 - The optimal solution for K(n,W) is the better of the optimal solution for either

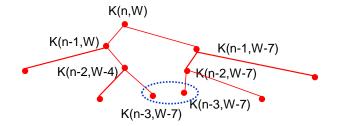
K(n-1,W) or $x_n+K(n-1,W-x_n)$

- For **n=0**

 $K(\mathbf{0},\mathbf{W})$ has a trivial solution of an empty set S with weight $\mathbf{0}$

recursive calls

Recursive calls on list ...,3, 4, 7



common sub-problems

- Only sub-problems are K(i,w) for
 - − i = 0,1,..., n
 - w = 0,1,..., W
- Dynamic programming solution
 - Table entry for each K(i,w)
 - **OPT** value of optimal soln for first **i** objects and weight **w belong** flag - is **x**_i a part of this solution?
 - Initialize OPT[0,w] for w=0,...,W
 - Compute all OPT[i,*] from OPT[i-1,*] for i>0

dynamic knapsack algorithm

for w=0 to W; OPT[0,w] \leftarrow 0; end for for i=1 to n do for w=0 to W do OPT[i,w] \leftarrow OPT[i-1,w] belong[i,w] \leftarrow 0 if $w \ge x_i$ then val $\leftarrow x_i$ +OPT[i-1,w-x_i] if val>OPT[i,w] then OPT[i,w] \leftarrow val belong[i,w] \leftarrow 1 end for return(OPT[n,W])

Time O(nW)

sample execution on 2, 3, 4, 7 with W=15

saving space

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S?
 - Follow the **belong** flags **O(n)** time
 - What about space?

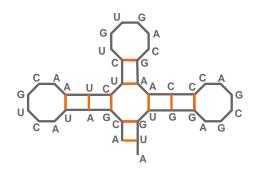
three steps to dynamic programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is "small"
 – e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

RNA secondary structure

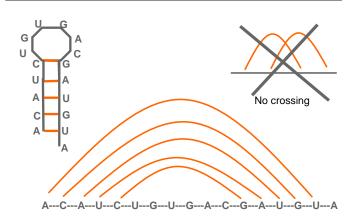
- RNA: sequence of bases
 - String over alphabet {A, C, G, U}
 U-G-U-A-C-C-G-G-U-A-G-U-A-C-A
- · RNA folds and sticks to itself like a zipper
 - A bonds to U
 - C bonds to G
 - Bends can't be sharp
 - No twisting or criss-crossing
- How the bonds line up is called the RNA secondary structure

RNA secondary structure



ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

another view



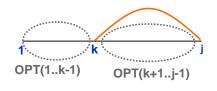
RNA secondary structure

- Input: String x₁...x_n ∈ {A,C,G,U}*
- Output: Maximum size set S of pairs (i,j) such that
 - $\{x_i, x_j\} = \{A, U\} \text{ or } \{x_i, x_j\} = \{C, G\}$
 - The pairs in **S** form a matching
 - -i<j-4 (no sharp bends)
 - No crossing pairs

If (i,j) and (k,l) are in **S** then it is not the case that they cross as in i<k<j<l

recursive solution

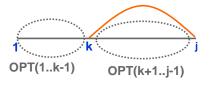
Try all possible matches for the last base



OPT(1..j)=MAX(OPT(1..j-1),1+MAX_{k=1..j-5} (OPT(1..k-1)+OPT(k+1..j-1)) x_k matches x_j Doesn't start at 1 OPT(i..j)=MAX(OPT(i..j-1), 1+MAX_{k=1..j-5} (OPT(i..k-1)+OPT(k+1..j-1))) x_k matches x_j

recursive solution

Try all possible matches for the last base



RNA secondary structure

- 2D Array OPT(i,j) for i≤j represents optimal # of matches entirely for segment i..j
- For $j-i \le 4$ set **OPT**(i,j)=0 (no sharp bends)
- Then compute OPT(i,j) values when i-i=5,6,...,n-1 in turn using recurrence.
- Return **OPT(1,n)**
- Total of O(n³) time
- Can also record matches along the way to produce S
 - Algorithm is similar to the polynomial-time algorithm for Context-Free Languages based on Chomsky Normal Form from 322
 - Both use dynamic programming over intervals

sequence alignment: edit distance

- Given:
 - Two strings of characters $A=a_1 a_2 \dots a_n$ and $B=b_1 b_2 \dots b_m$
- Find:
 - The minimum number of edit steps needed to transform A into B where an edit can be:
 - insert a single character
 - delete a single character
 - substitute one character by another

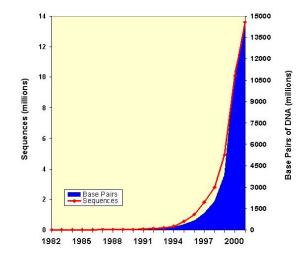
sequence alignment vs editdDistance

- Sequence Alignment
 - Insert corresponds to aligning with a "-" in the first string
 - $Cost \delta$ (in our case 1)
 - Delete corresponds to aligning with a "-" in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch Cost α_{ab} (in our case 1 if a≠b and 0 if a=b)
- In Computational Biology this alignment algorithm is attributed to Smith & Waterman

applications

- "diff" utility where do two files differ
- Version control & patch distribution save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence

Growth of GenBank



recursive solutions

- Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B
- Let D(i,j) be the number of edits required to transform a₁ a₂ ... a_i into b₁ b₂ ... b_i
- Clearly **D(0,0)=0**

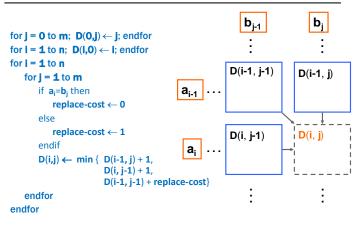
computing D(n,m)

- Imagine how best sequence handles the last characters a_n and b_m
- · If best sequence of operations
 - deletes a_n then D(n,m)=D(n-1,m)+1
 - inserts b_m then D(n,m)=D(n,m-1)+1
 - replaces a_n by b_m then D(n,m)=D(n-1,m-1)+1
 - matches a_n and b_m then D(n,m)=D(n-1,m-1)

recursive algorithm D(n,m)

```
 \begin{array}{c} \text{if } n=0 \text{ then} \\ \text{return (m)} \\ \text{else if } m=0 \text{ then} \\ \text{return(n)} \\ \text{else} \\ \text{if } a_n=b_m \text{ then} \\ \text{replace-cost} \leftarrow 0 \\ \text{else} \\ \text{replace-cost} \leftarrow 1 \\ \text{endif} \\ \text{return(mln[ D(n-1, m) + 1, D(n, m-1) + 1, D(n, m-1) + replace-cost \})} \\ \end{array}
```

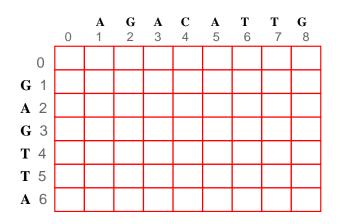
dynamic programming



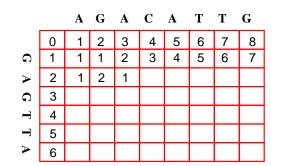
A G A C A T T G G ₽ G Ţ T

▶ 6

example run with AGACATTG and GAGTTA



example run with AGACATTG and GAGTTA



example run with AGACATTG and GAGTTA

		Α	G	А	С	А	Т	Т	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
G	3	2	1	2	2	3	4	5	5
Т	4								
Т	5								
A	6								

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

		А	G	A	С	A	Т	Т	G
	Q.	⊧ 1 <mark>∢</mark>	- 2 <	- 3 <	- 4 <	- 5 <	- 6 <	- 7 <	- 8
ፍ	1	1	`1 <	2 <	- 3 <	- 4 <	- 5 <	- 6 <	- 7
A	2	1	-2	1	÷2∢	- 3 <	- 4 <	- 5 <	- 6
<u>ନ</u>	3	2	1	-2	2<	- 3 <	- 4 -	- 5 ◄	- 5
T	4	3	2	2	- 3	3	3 <	- 4 <	- 5
T	5	4	3	3	3∢	- 4	3	3 <	- 4
A	6	5	4	3 <	- 4	3 <	- 4	4	4

example run with AGACATTG and GAGTTA

		Α	G	A	С	А	Т	Т	G
	0	1	2	3	4	5	6	7	8
n	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
<u>ନ</u>	3	2	1	2	2	3	4	5	5
Т	4	3	2	2	3	3	3	4	5
Т	5	4	3	3	3	4	3	3	4
A	6	5	4	3	4	3	4	4	4

example run with AGACATTG and GAGTTA

		А	G	Α	С	Α	Т	Т	G
	0	<mark>⊢ 1</mark> ∢	- 2 <	- 3 <	- 4 <	- 5 <	- 6 <	- 7 <	- 8
G	1	1	`1 <	2 <	- 3<	- 4 <	- 5 <	- 6 <	- 7
A	2	1	-2	1	- 2∢	- 3 <	- 4 <	- 5 <	- 6
G	3	2	1	-2	2<	- 3 <	- 4 -	← 5 <	- 5
T	4	3	2	2	- 3	3	3 <	4 <	- 5
T	5	4	3	3	3∢	- 4	3	3 <	- 4
A	6	5	4	3 <	- 4	3 <	- 4	4	4