CSE 421.: Algorithms

Winter 2014
Lecture 15: RNA secondary structure, sequence alignment

Reading:
Sections 6.3-6.7

CHsz

Q -— o ZHo
e GATATTAAGAATAGGGATATA?/

TTACGEEGAATTAATTACCGAT,,

10110101011102100100000
15041 }OTeL0101 0 »¥0T010

review: least squares

2/9/2014

segmented least squares

Least Squares

— Given a set P of n points in the plane
P1=(X4,Y1) - Pp=(Xp,¥y,) With x4<...< x,, determine
a line L given by y=ax+b that optimizes the
totaled ‘squared error’

Error(L,P)=X;(y;-ax;-b)?
— A classic problem in statistics

— Optimal solution is known (see text for closed form)
Call this line(P) and its error error(P)

segmented least squares

What if data seems to follow a piece-wise
linear model?

segmented least squares

segmented least squares

segmented least squares

* What if data seems to follow a piece-wise linear
model?

* Number of pieces to choose is not obvious

* If we chose n-1 pieces we could fit with O error
— Not fair

* Add a penalty of C times the number of pieces to
the error to get a total penalty

* How do we compute a solution with the smallest
possible total penalty?

segmented least squares

Recursive idea

— If we knew the point p; where the last line
segment began then we could solve the
problem optimally for points py,...,p; and
combine that with the last segment to get a
global optimal solution

Let OPT(i) be the optimal penalty for points {p,...,p;}
Total penalty for this solution would be
Error({p;,...,.p,}) + C+ OPT(j-1)

2/9/2014

segmented least squares

segmented least squares

Recursive idea

— We don’t know which point is p;
But we do know that 1<j<n

The optimal choice will simply be the best among these
possibilities
— Therefore:
OPT(n)
= min y ., {Error({p;, ...,p,}) + €+ OPT(j — 1)}

2/9/2014

segmented least squares

Recursive idea

— We don’t know which point is P,
But we do know that 1<j<n
The optimal choice will simply be the best among these
possibilities

— Therefore:

dynamic programming solution

SegmentedLeastSquares(n)
array OPT[O,...,n], Begin[1,...,n]
OPT[0]«<-0
fori=1ton
OPT[i]«Error{(py,....p)}+C
Begin[il<1
for j=2 to i-1
e«Error{(p;,...,p)}+C+OPT[j-1]
if @ <OPT][i] then

OPTJi] <€
Begin[i]«j
endif
endfor

endfor
return(OPT[n])

knapsack (subset-sum) problem

* Given:
— integer W (knapsack size)
—n object sizes X4, X5, ... , X,
* Find:
—Subset S of {1,..., n} such that in W
but > x is as large as possible ES

ieS

recursive algorithm

recursive algorithm

* Let K(n,W) denote the problem to solve for

W and x4, X5, ..., X,

* For n>0,
— The optimal solution for K(n,W) is the better of
the optimal solution for either
K(n-1,W) or x,+K(n-1,W-x,,)
— For n=0

K(0,W) has a trivial solution of an empty set S with
weight 0

* Let K(n,W) denote the problem to solve for
W and x4, X5, ..., X,

recursive calls

Recursive calls on list ...,3, 4, 7

2/9/2014

common sub-problems

* Only sub-problems are K(i,w) for
-i=04,..,n
-w=01,..,W
* Dynamic programming solution
— Table entry for each K(i,w)
OPT - value of optimal soln for first i objects and weight w
belong flag - is x; a part of this solution?
— Initialize OPT[O,w] for w=0,...,.W
— Compute all OPTI[i,*] from OPTI[i-1,*] for i>0

sample execution on 2, 3, 4, 7 with W=15

dynamic knapsack algorithm

for w=0 to W; OPT[O,w] < O; end for
fori=1tondo
for w=0 to W do
OPTI[i,w]«OPT[i-1,w] Tl me O(nW)
belongl[i,w]<0
if w=x;then
val <—x;+OPT[i-1,w-x;]
if val>OPT[i,w] then
OPT[i,w]<«val
belongli,w]«1
end for
end for
return(OPT[n,W])

saving space

* To compute the value OPT of the solution

only need to keep the last two rows of OPT
at each step

* What about determining the set S?

— Follow the belong flags O(n) time
— What about space?

2/9/2014

2/9/2014

three steps to dynamic programming RNA secondary structure
* Formulate the answer as a recurrence relation or * RNA: sequence of bases
recursive algorithm — String over alphabet {A, C, G, U}

U-G-U-A-C-C-G-G-U-A-G-U-A-C-A

* Show that the number of different values of
* RNA folds and sticks to itself like a zipper

parameters in the recursive algorithm is “small”

— e.g., bounded by a low-degree polynomial — Abondsto U
— C bonds to G
» Specify an order of evaluation for the recurrence — Bends can’t be sharp
so that you already have the partial results ready _ No twisting or criss-crossing

when you need them. * How the bonds line up is called the RNA secondary

structure
RNA secondary structure another view

y

G A

U C
C G
Up—A / \
A u No crossing
C G
A U

A

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA A---C---A---U---C---U---G---U---G---A---C---G---A---U---G---U---A

RNA secondary structure

recursive solution

* Input: String x,...x,<{A,C,G,U}*
* Output: Maximum size set S of pairs (i,j)
such that
— {x,x}={A,U} or {x;,x} ={C,G}
—The pairs in S form a matching
—i<j-4 (no sharp bends)

— No crossing pairs

If (i,j) and (k1) are in S then it is not the case that they
cross as in i<k<j<I

recursive solution

Try all possible matches for the last base

OPT(1..k-1) OPT(k+1..j-1)

OPT(L..j)=MAX(OPT(L.j-1), 1+MAX,; j 5 (OPT(l..k—l)+(;PT(k+1..j—1))

X, matches x
k 1" Doesn’t start at 1

General form:

OPT(i..j)=MAX(OPT(i..j-1),
1+MAX,—; ;.5 (OPT(i..k-1)+OPT(k+L.-1)))

X matches x;

RNA secondary structure

Try all possible matches for the last base

OPT(1..k-1) OPT(k+1..j-1)

« 2D Array OPT(i,j) for i<j represents optimal # of matches
entirely for segment i..j

* For j-i <4 set OPT(i,j)=0 (no sharp bends)

* Then compute OPT(i,j) values when
Jji=5,6,...,n-1in turn using recurrence.

¢ Return OPT(1,n)

+ Total of O(n3) time

« Can also record matches along the way to produce S

— Algorithm is similar to the polynomial-time algorithm for Context-
Free Languages based on Chomsky Normal Form from 322

— Both use dynamic programming over intervals

2/9/2014

sequence alignment: edit distance

sequence alignment vs editdDistance

* Given:
— Two strings of characters A=a, a, ... a, and
B=b, b, ... b,
* Find:

— The minimum number of edit steps needed to
transform A into B where an edit can be:

—insert a single character
— delete a single character
— substitute one character by another

applications

» "diff" utility - where do two files differ

* Version control & patch distribution -
save/send only changes

* Molecular biology

— Similar sequences often have similar origin and
function

— Similarity often recognizable despite millions or
billions of years of evolutionary divergence

* Sequence Alignment

— Insert corresponds to alighing with a “~" in the first
string
Cost & (in our case 1)
— Delete corresponds to aligning with a “-” in the second
string

Cost 6 (in our case 1)
— Replacement of an a by a b corresponds to a mismatch
Cost a,, (in our case 1 if a=b and 0 if a=b)

* In Computational Biology this alignment algorithm
is attributed to Smith & Waterman

Growth of GenBank

14 15000

13500
12000
107 10500
9000
7500

6000

Sequences (millions)

4500

Base Pairs of DNA {millions)

3000

W Base Pairs
24 —e—Sequences

L o e A A O R s 0
1982 1985 1988 1991 1994 1997 2000

1500

2/9/2014

recursive solutions

* Sub-problems: Edit distance problems for all
prefixes of A and B that don’t include all of
both A and B

* Let D(i,j) be the number of edits required to
transform a, a, ... @;into b, b, ... b,

* Clearly D(0,0)=0

recursive algorithm D(n,m)

computing D(n,m)

if n=0 then
return (m)
else if m=0 then
return(n)
else
if a,=b,, then
replace-cost < 0 ‘

else ‘> cost of substitution of a,, by b, (if used)

replace-cost <— 1
endif
return(min{ D(n-1, m) + 1,
D(n,m-1)+ 1,
D(n-1, m-1) + replace-cost })

* Imagine how best sequence handles the
last characters a, and b,
* If best sequence of operations
— deletes a, then D(n,m)=D(n-1,m)+1
— inserts b, then D(n,m)=D(n,m-1)+1
—replaces a, by b,,, then
D(n,m)=D(n-1,m-1)+1
— matches a, and b,, then
D(n,m)=D(n-1,m-1)

dynamic programming

for j = 0 to m; D(0,j) < j; endfor
for i = 1 to n; D(i,0) < I; endfor

fori=1ton P
forj =4tom D(I'lr J_l) D(l-l,])
if a;=b;then Qjq f---
replace-cost <— 0
else o
1
replace-cost < 1 D(, j-1) 1 DG,) :
endif . _,: 1
D(i,j) <~ min { D(i-1,j) +1, i :
D(i, j-1) + 1, L. !

D(i-1, j-1) + replace-cost}
endfor
endfor

2/9/2014

2/9/2014

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

A G A CATTG

L 0

O <

< ™

(O

314|565

2

1

G1

A2

G 3

T 4

TS5

A 6

example run with AGACATTG and GAGTTA

example run with AGACATTG and GAGTTA

A G A CATTG

A G A CATTG

5
5

3|4

2
2

10

2/9/2014

example run with AGACATTG and GAGTTA example run with AGACATTG and GAGTTA

AGACATT G AGACATT G

0] 12 |3 14|56 [7]38 + 142434 445464748

a1l 111 |2 314|5]|6 7 a1l 1142« 34445464 7
>12f 1{22|2|3|4|5]6s6 > 2| 1+2 |1 +24 3444546
o|3[2l1]2]2]|3][4]|5]s5 o|3|2/1+2|24344+545
~|4|3|2|2]|3[3|3]|4]5 ~|(4]| 3|/2|2+3|3[34445
=|(5|4[3|3|[3[4]3]3]4 =|(5| a[3[3][3¢4][3[344

> 6| 5|/4|3|4|3|4|4]4 >l 6| 5/4a|344|394|a]|2s

example run with AGACATTG and GAGTTA

AGACATTG
+ 1l 243« 4< 54 6«7 <«
1142« 3¢ 4«45«06 <
+2 |1 +24344454«¢
142 | 24 344¢5¢
22%3[3][344<¢
3[3 344|334
4344|3444

VLILLDV D
O PUTT AT WP PO
ESY N RO N PO FN RN o)

1P PO PR

11

