
2/9/2014

1

CSE 421: Algorithms

Winter 2014
Lecture 15: RNA secondary structure, sequence alignment

Reading:

Sections 6.3-6.7

segmented least squares

Least Squares

– Given a set P of n points in the plane

p1=(x1,y1),…,pn=(xn,yn) with x1… xn determine

a line L given by y=ax+b that optimizes the

totaled ‘squared error’

 Error(L,P)=Si(yi-axi-b)2

– A classic problem in statistics

– Optimal solution is known (see text for closed form)

Call this line(P) and its error error(P)

review: least squares segmented least squares

What if data seems to follow a piece-wise

linear model?

2/9/2014

2

segmented least squares segmented least squares

segmented least squares

• What if data seems to follow a piece-wise linear

model?

• Number of pieces to choose is not obvious

• If we chose n-1 pieces we could fit with 0 error

– Not fair

• Add a penalty of C times the number of pieces to

the error to get a total penalty

• How do we compute a solution with the smallest

possible total penalty?

segmented least squares

Recursive idea

– If we knew the point pj where the last line

segment began then we could solve the

problem optimally for points p1,...,pj and

combine that with the last segment to get a

global optimal solution

Let OPT(i) be the optimal penalty for points {p1,…,pi}

Total penalty for this solution would be

 Error({pj,…,pn}) + C + OPT(j-1)

2/9/2014

3

segmented least squares segmented least squares

Recursive idea

– We don’t know which point is pj

But we do know that 1jn

The optimal choice will simply be the best among these
possibilities

– Therefore:

segmented least squares

Recursive idea

– We don’t know which point is pj

But we do know that 1jn

The optimal choice will simply be the best among these
possibilities

– Therefore:

 OPT 𝒏
= min⁡𝟏𝒋𝒏⁡{Error({𝒑𝒋, … , 𝒑𝒏}) ⁡+ ⁡𝑪 + OPT(𝒋 − 𝟏)}

dynamic programming solution

SegmentedLeastSquares(n)

 array OPT[0,...,n], Begin[1,...,n]

 OPT[0]0

 for i=1 to n

 OPT[i]Error{(p1,…,pi)}+C

 Begin[i]1

 for j=2 to i-1

 eError{(pj,…,pi)}+C+OPT[j-1]

 if e OPT[i] then

 OPT[i] e

 Begin[i]j

 endif

 endfor

 endfor

 return(OPT[n])

2/9/2014

4

knapsack (subset-sum) problem

• Given:

– integer W (knapsack size)

– n object sizes x1, x2, … , xn

• Find:

– Subset S of {1,…, n} such that

but is as large as possible



 i

i S

x W



 i

i S

x

recursive algorithm

• Let K(n,W) denote the problem to solve for
W and x1, x2, … , xn

recursive algorithm

• Let K(n,W) denote the problem to solve for
W and x1, x2, … , xn

• For n0,

– The optimal solution for K(n,W) is the better of
the optimal solution for either

 K(n-1,W) or xn+K(n-1,W-xn)

– For n=0

 K(0,W) has a trivial solution of an empty set S with
 weight 0

recursive calls

Recursive calls on list …,3, 4, 7

K(n,W)

K(n-1,W-7)

K(n-3,W-7)

K(n-2,W-4)

K(n-1,W)

K(n-2,W-7)

K(n-3,W-7)

2/9/2014

5

common sub-problems

• Only sub-problems are K(i,w) for

– i = 0,1,..., n

– w = 0,1,..., W

• Dynamic programming solution

– Table entry for each K(i,w)

OPT - value of optimal soln for first i objects and weight w

belong flag - is xi a part of this solution?

– Initialize OPT[0,w] for w=0,...,W

– Compute all OPT[i,*] from OPT[i-1,*] for i0

dynamic knapsack algorithm

for w=0 to W; OPT[0,w]  0; end for

for i=1 to n do

for w=0 to W do

 OPT[i,w]OPT[i-1,w]

 belong[i,w]0

if w  xi then
 val xi+OPT[i-1,w-xi]
 if valOPT[i,w] then
 OPT[i,w]val
 belong[i,w]1

end for

end for

return(OPT[n,W])

Time O(nW)

sample execution on 2, 3, 4, 7 with W=15 saving space

• To compute the value OPT of the solution

only need to keep the last two rows of OPT

at each step

• What about determining the set S?

– Follow the belong flags O(n) time

– What about space?

2/9/2014

6

three steps to dynamic programming

• Formulate the answer as a recurrence relation or
recursive algorithm

• Show that the number of different values of
parameters in the recursive algorithm is “small”

– e.g., bounded by a low-degree polynomial

• Specify an order of evaluation for the recurrence
so that you already have the partial results ready
when you need them.

RNA secondary structure

• RNA: sequence of bases

– String over alphabet {A, C, G, U}

 U-G-U-A-C-C-G-G-U-A-G-U-A-C-A

• RNA folds and sticks to itself like a zipper

– A bonds to U

– C bonds to G

– Bends can’t be sharp

– No twisting or criss-crossing

• How the bonds line up is called the RNA secondary

structure

RNA secondary structure

A

A

A
A

A

A
A C C

C

C

C

C

U

U G

U

U

U

U

G

G

G
G

G

G

G

G

A

A A

A

C

C

C

C

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

U

U

G

another view

A---C---A---U---C---U---G---U---G---A---C---G---A---U---G---U---A

U A

A

A

C

C

U

U

U

G

G

G

A

C

U

G

A No crossing

2/9/2014

7

RNA secondary structure

• Input: String x1...xn{A,C,G,U}*

• Output: Maximum size set S of pairs (i,j)

such that

– {xi,xj}={A,U} or {xi,xj} ={C,G}

– The pairs in S form a matching

– i<j-4 (no sharp bends)

– No crossing pairs

If (i,j) and (k,l) are in S then it is not the case that they
cross as in i<k<j<l

recursive solution

Try all possible matches for the last base

j k

OPT(1..k-1) OPT(k+1..j-1)

1

Doesn’t start at 1

OPT(1..j)=MAX(OPT(1..j-1),1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1))

xk matches xj

OPT(i..j)=MAX(OPT(i..j-1),

 1+MAXk=i..j-5 (OPT(i..k-1)+OPT(k+1..j-1)))
xk matches xj

General form:

recursive solution

Try all possible matches for the last base

j k

OPT(1..k-1) OPT(k+1..j-1)

1

RNA secondary structure

• 2D Array OPT(i,j) for i≤j represents optimal # of matches
entirely for segment i..j

• For j-i ≤4 set OPT(i,j)=0 (no sharp bends)

• Then compute OPT(i,j) values when

 j-i=5,6,...,n-1 in turn using recurrence.

• Return OPT(1,n)

• Total of O(n3) time

• Can also record matches along the way to produce S

– Algorithm is similar to the polynomial-time algorithm for Context-
Free Languages based on Chomsky Normal Form from 322

– Both use dynamic programming over intervals

2/9/2014

8

sequence alignment: edit distance

• Given:

– Two strings of characters A=a1 a2 ... an and

B=b1 b2 ... bm

• Find:

– The minimum number of edit steps needed to

transform A into B where an edit can be:

– insert a single character

– delete a single character

– substitute one character by another

sequence alignment vs editdDistance

• Sequence Alignment

– Insert corresponds to aligning with a “–” in the first
string

Cost d (in our case 1)

– Delete corresponds to aligning with a “–” in the second
string

Cost d (in our case 1)

– Replacement of an a by a b corresponds to a mismatch

Cost aab (in our case 1 if ab and 0 if a=b)

• In Computational Biology this alignment algorithm
is attributed to Smith & Waterman

applications

• "diff" utility – where do two files differ

• Version control & patch distribution –

save/send only changes

• Molecular biology

– Similar sequences often have similar origin and

function

– Similarity often recognizable despite millions or

billions of years of evolutionary divergence

32

2/9/2014

9

recursive solutions

• Sub-problems: Edit distance problems for all

prefixes of A and B that don’t include all of

both A and B

• Let D(i,j) be the number of edits required to

transform a1 a2 ... ai into b1 b2 ... bj

• Clearly D(0,0)=0

computing D(n,m)

• Imagine how best sequence handles the

last characters an and bm

• If best sequence of operations

– deletes an then D(n,m)=D(n-1,m)+1

– inserts bm then D(n,m)=D(n,m-1)+1

– replaces an by bm then

D(n,m)=D(n-1,m-1)+1

– matches an and bm then

D(n,m)=D(n-1,m-1)

recursive algorithm D(n,m)

if n=0 then

return (m)

else if m=0 then

return(n)

else

if an=bm then

replace-cost  0

else

replace-cost  1

endif

return(min{ D(n-1, m) + 1,

 D(n, m-1) + 1,

 D(n-1, m-1) + replace-cost })

cost of substitution of an by bm (if used)

for j = 0 to m; D(0,j)  j; endfor

for i = 1 to n; D(i,0)  i; endfor

for i = 1 to n

for j = 1 to m

if ai=bj then

replace-cost  0

else

replace-cost  1

endif

D(i,j)  min { D(i-1, j) + 1,
 D(i, j-1) + 1,
 D(i-1, j-1) + replace-cost}

endfor

endfor

dynamic programming

D(i-1, j-1)

D(i-1, j)

D(i, j-1)

D(i, j)

ai

bj

ai-1

bj-1

. . .
. . .

…

…

. . .
. . .

2/9/2014

10

example run with AGACATTG and GAGTTA

 A G A C A T T G

0 1 2 3 4 5 6 7 8

 0

G 1

A 2

G 3

T 4

T 5

A 6

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2

3

4

5

6

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1

4

5

6

3

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4

5

6

2/9/2014

11

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

example run with AGACATTG and GAGTTA

A G A C A T T G

0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

