CSE 421: Algorithms

Winter 2014

Lecture 15: RNA secondary structure, sequence alignment
Reading:
Sections 6.3-6.7

review: least squares

segmented least squares

Least Squares

- Given a set P of n points in the plane $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ with $x_{1}<\ldots<x_{n}$ determine a line L given by $y=a x+b$ that optimizes the totaled 'squared error'
$\operatorname{Error}(\mathbf{L}, \mathbf{P})=\Sigma_{\mathrm{i}}\left(\mathbf{y}_{\mathbf{i}}-\mathbf{a} \mathbf{x}_{\mathrm{i}}-\mathbf{b}\right)^{2}$
- A classic problem in statistics
- Optimal solution is known (see text for closed form) Call this line(\mathbf{P}) and its error error(\mathbf{P})
segmented least squares
What if data seems to follow a piece-wise linear model?

segmented least squares

segmented least squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose $\mathrm{n}-1$ pieces we could fit with 0 error - Not fair
- Add a penalty of \mathbf{C} times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

segmented least squares

segmented least squares

Recursive idea

- If we knew the point p_{j} where the last line segment began then we could solve the problem optimally for points p_{1}, \ldots, p_{j} and combine that with the last segment to get a global optimal solution Let OPT(i) be the optimal penalty for points $\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{\mathbf{i}}\right\}$ Total penalty for this solution would be

$$
\operatorname{Error}\left(\left\{\mathbf{p}_{\mathbf{j}}, \ldots, \mathbf{p}_{\mathrm{n}}\right\}\right)+\mathbf{C}+\operatorname{OPT}(\mathbf{j}-\mathbf{1})
$$

segmented least squares

segmented least squares

Recursive idea

- We don't know which point is p_{J}

But we do know that $1 \leq j \leq n$
The optimal choice will simply be the best among these possibilities

- Therefore:

segmented least squares

Recursive idea

- We don't know which point is p_{j}

But we do know that $1 \leq j \leq n$
The optimal choice will simply be the best among these possibilities

- Therefore:

```
OPT(n)
    = min 1<j\leqn {Error({\mp@subsup{\boldsymbol{p}}{j}{},\ldots,\mp@subsup{\boldsymbol{p}}{n}{}})+\boldsymbol{C}+\textrm{OPT}(\boldsymbol{j}-\mathbf{1})}
```

dynamic programming solution

```
SegmentedLeastSquares(n)
    array OPT[0,..,n], Begin[1,..,n]
    OPT[0]}\leftarrow
    for i=1 to n
    OPT[i]\leftarrowError{(p
    Begin[i]\leftarrow1
    for j=2 to l-1
        e}\leftarrow\operatorname{Error{(\mp@subsup{p}{j}{\prime},\ldots,\mp@subsup{p}{i}{\prime})}+C+OPT[j-1]
        if e<OPT[i] then
            OPT[i]}\leftarrow
            Begin[i]}\leftarrow
        endif
    endfor
    endfor
    return(OPT[n])
```

- Given:
- integer W (knapsack size)
$-n$ object sizes $x_{1}, x_{2}, \ldots, x_{n}$
- Find:
- Subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} x_{i} \leq W$ but $\sum_{i \in S} \mathbf{x}_{i}$ is as large as possible
recursive algorithm
- Let $K(n, W)$ denote the problem to solve for W and $x_{1}, x_{2}, \ldots, x_{n}$
- For $\mathbf{n}>0$,
- The optimal solution for $K(n, W)$ is the better of the optimal solution for either
$K(n-1, W)$ or $x_{n}+K\left(n-1, W-x_{n}\right)$
- For $n=0$
$\mathbf{K}(\mathbf{0}, \mathbf{W})$ has a trivial solution of an empty set \mathbf{S} with weight 0
recursive algorithm
- Let $\mathrm{K}(\mathrm{n}, \mathbf{W})$ denote the problem to solve for W and $x_{1}, x_{2}, \ldots, x_{n}$

recursive calls

Recursive calls on list ...,3, 4, 7

common sub-problems

- Only sub-problems are $\mathbf{K}(\mathbf{i}, \mathrm{w})$ for
- i = 0,1, \ldots, n
$-\mathrm{w}=0,1, \ldots, \mathrm{w}$
- Dynamic programming solution
- Table entry for each K(i,w)

OPT - value of optimal soln for first i objects and weight w
belong flag - is x_{i} a part of this solution?

- Initialize OPT[0,w] for w=0,...,W
- Compute all OPT[i,*] from OPT[i-1,*] for $i>0$
dynamic knapsack algorithm

```
for w=0 to \mathbf{w};\mathbf{OPT[0,w]}\leftarrow\mathbf{0};\mathrm{ end for}
for i=1 to n do
    for w=0 to W do
        OPT[i,w]\leftarrowOPT[i-1,w] Time O(nW)
        belong[l,w]\leftarrow0
        if w}\geq\mp@subsup{x}{i}{}\mathrm{ then
            val }\leftarrow\mp@subsup{x}{i}{}+\mathrm{ OPT [i-1,w-x
            if val>OPT[i,w] then
                OPT[i,w]\leftarrowval
                belong[i,w]}\leftarrow
        end for
end for
return(OPT[n,W])
```

sample execution on $2,3,4,7$ with $W=15$

saving space

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S ?
- Follow the belong flags O(n) time
- What about space?

three steps to dynamic programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is "small" - e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

RNA secondary structure

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

RNA secondary structure

- RNA: sequence of bases
- String over alphabet $\{\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathrm{U}\}$

U-G-U-A-C-C-G-G-U-A-G-U-A-C-A

- RNA folds and sticks to itself like a zipper
- A bonds to U
- C bonds to G
- Bends can't be sharp
- No twisting or criss-crossing
- How the bonds line up is called the RNA secondary structure
another view

RNA secondary structure

- Input: String $\mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}} \in\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}^{*}$
- Output: Maximum size set \mathbf{S} of pairs (i,j) such that
$-\left\{\mathbf{x}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\}=\{\mathrm{A}, \mathrm{U}\}$ or $\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\}=\{\mathbf{C}, \mathbf{G}\}$
- The pairs in S form a matching
- $\mathrm{i}<\mathrm{j}-4$ (no sharp bends)
- No crossing pairs

If (\mathbf{i}, j) and ($\mathbf{k}, \mathrm{l})$ are in S then it is not the case that they cross as in $\mathrm{i}<\mathrm{k}<\mathrm{j}<1$

recursive solution

Try all possible matches for the last base

$\operatorname{OPT}(1 . . \mathrm{j})=\operatorname{MAX}\left(\operatorname{OPT}(1 . . \mathrm{j}-1), 1+\mathrm{MAX}_{\mathrm{k}=1 . . \mathrm{j}-5}\right.$ (OPT(1..k-1)+OPT(k+1..j-1))

$$
\mathbf{x}_{\mathrm{k}} \text { matches } \mathrm{x}_{\mathrm{j}} \quad \text { Doesn't start at } 1
$$

General form:

```
OPT(i..j)=MAX(OPT(i..j-1),
    1+MAX 
        xk
```


RNA secondary structure

- 2D Array OPT(i,j) for i<j represents optimal \# of matches entirely for segment $i . . j$
- For $\mathrm{j}-\mathrm{i} \leq 4$ set OPT(i,j)=0 (no sharp bends)
- Then compute OPT(i, j$)$ values when $\mathrm{j}-\mathrm{i}=5,6, \ldots, \mathrm{n}-1$ in turn using recurrence.
- Return OPT(1,n)
- Total of $O\left(n^{3}\right)$ time
- Can also record matches along the way to produce S
- Algorithm is similar to the polynomial-time algorithm for ContextFree Languages based on Chomsky Normal Form from 322
- Both use dynamic programming over intervals
- Given:
- Two strings of characters $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{m}$
- Find:
- The minimum number of edit steps needed to transform A into B where an edit can be:
- insert a single character
- delete a single character
- substitute one character by another
applications
- "diff" utility - where do two files differ
- Version control \& patch distribution save/send only changes
- Molecular biology
- Similar sequences often have similar origin and function
- Similarity often recognizable despite millions or billions of years of evolutionary divergence
- Sequence Alignment
- Insert corresponds to aligning with a "-" in the first string Cost δ (in our case 1)
- Delete corresponds to aligning with a "-" in the second string
Cost δ (in our case 1)
- Replacement of an aby abcorresponds to a mismatch Cost $\alpha_{a b}$ (in our case 1 if $a \neq b$ and 0 if $a=b$)
- In Computational Biology this alignment algorithm is attributed to Smith \& Waterman

Growth of GenBank

recursive solutions

- Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B
- Let $D(i, j)$ be the number of edits required to transform $a_{1} a_{2} \ldots a_{i}$ into $b_{1} b_{2} \ldots b_{j}$
- Clearly $D(0,0)=0$

recursive algorithm $D(n, m)$

```
if n=0 then
    return (m)
else if m=0 then
    return(n)
else
    if }\mp@subsup{a}{n}{}=\mp@subsup{b}{m}{}\mathrm{ then
        replace-cost }\leftarrow
    else
        replace-cost }\leftarrow
    endif
    return(min{ D(n-1,m)+1,
        D(n, m-1) + 1,
        D(n-1,m-1) + replace-cost })
```


computing $\mathrm{D}(\mathrm{n}, \mathrm{m})$

- Imagine how best sequence handles the last characters a_{n} and b_{m}
- If best sequence of operations
- deletes \mathbf{a}_{n} then $\mathbf{D}(\mathrm{n}, \mathrm{m})=\mathbf{D}(\mathrm{n}-1, m)+\mathbf{1}$
- inserts \mathbf{b}_{m} then $\mathbf{D}(\mathrm{n}, \mathrm{m})=\mathbf{D}(\mathrm{n}, \mathrm{m}-\mathbf{1})+\mathbf{1}$
- replaces \mathbf{a}_{n} by \mathbf{b}_{m} then $D(n, m)=D(n-1, m-1)+1$
- matches $\mathbf{a}_{\mathbf{n}}$ and $\mathbf{b}_{\mathbf{m}}$ then $D(n, m)=D(n-1, m-1)$
dynamic programming

	0	\mathbf{A}	G	A 3	C	$\begin{gathered} \mathbf{A} \\ 5 \end{gathered}$	T	$\begin{gathered} \mathbf{T} \\ 7 \end{gathered}$	G 8
0									
G 1									
A 2									
G 3									
T 4									
T 5									
A 6									

example run with AGACATTG and GAGTTA

		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
Q	1	1	1	2	3	4	5	6	7
>	2								
Q	3								
-	4								
$\stackrel{ }{ }$	5								
>	6								

example run with AGACATTG and GAGTTA

		A	G	A	C	A			G
	0	1	2	3	4	5	6	7	8
Q	1	1	1	2	3	4	5	6	7
\rightarrow	2	1	2	1	2	3	4	5	6
Q	3	2	1	2	2	3	4	5	5
\rightarrow	4	3	2	2	3	3	3	4	5
\rightarrow	5	4	3	3	3	4	3	3	4
>	6	5	4	3	4	3	4	4	4

example run with AGACATTG and GAGTTA

		A	G	A	C	A	T	T	T	G	
	$0 \leqslant 1 \leqslant 2 \leqslant 3 \leqslant 4 \leqslant 5 \leqslant 6 \leqslant 7 \leqslant 8$										8
	,	.	1	2	3	4	- 5	5	6	7	7
>	2	1	-2	1	+2	3	-4	4	5	6	6
Q	3	2	1	-2	2	3	-4	4	-5	5	5
$\xrightarrow{-1}$	4	3	2	2	- 3	3			4	5	5
\cdots	5	4	3	3	3	4	3	3	3		4
-	6	5	4	3			-4		4		4

