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CSE 421: Algorithms 

Winter 2014 
Lecture 15:  RNA secondary structure, sequence alignment 

 

Reading: 

Sections 6.3-6.7 

segmented least squares 

Least Squares 

– Given a set P of n points in the plane 

p1=(x1,y1),…,pn=(xn,yn) with x1… xn determine 

a line L given by y=ax+b that optimizes the 

totaled ‘squared error’ 

 Error(L,P)=Si(yi-axi-b)2 

– A classic problem in statistics 

– Optimal solution is known (see text for closed form) 

Call this line(P) and its error error(P) 

review: least squares segmented least squares 

What if data seems to follow a piece-wise 

linear model? 
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segmented least squares segmented least squares 

segmented least squares 

• What if data seems to follow a piece-wise linear 

model? 

• Number of pieces to choose is not obvious 

• If we chose n-1 pieces we could fit with 0 error 

– Not fair 

• Add a penalty of C times the number of pieces to 

the error to get a total penalty 

• How do we compute a solution with the smallest 

possible total penalty? 

segmented least squares 

Recursive idea 

– If we knew the point pj where the last line 

segment began then we could solve the 

problem optimally for points p1,...,pj and 

combine that with the last segment to get a 

global optimal solution 

Let OPT(i) be the optimal penalty for points {p1,…,pi} 

Total penalty for this solution would be  

     Error({pj,…,pn}) + C + OPT(j-1) 
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segmented least squares segmented least squares 

Recursive idea 

– We don’t know which point is pj 

But we do know that 1jn  

The optimal choice will simply be the best among these 
possibilities 

– Therefore: 

segmented least squares 

Recursive idea 

– We don’t know which point is pj 

But we do know that 1jn  

The optimal choice will simply be the best among these 
possibilities 

– Therefore: 

 OPT 𝒏  
= min⁡𝟏𝒋𝒏⁡{Error({𝒑𝒋, … , 𝒑𝒏}) ⁡+ ⁡𝑪 + OPT(𝒋 − 𝟏)} 

dynamic programming solution 

 

SegmentedLeastSquares(n) 

 array OPT[0,...,n], Begin[1,...,n] 

   OPT[0]0 

   for i=1 to n 

  OPT[i]Error{(p1,…,pi)}+C 

  Begin[i]1 

  for j=2 to i-1           

   eError{(pj,…,pi)}+C+OPT[j-1] 

   if e OPT[i] then 

         OPT[i] e 

         Begin[i]j 

    endif 

  endfor 

   endfor 

   return(OPT[n]) 
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knapsack (subset-sum) problem 

• Given: 

– integer W (knapsack size) 

– n object sizes  x1, x2, … , xn 

• Find: 

– Subset S of {1,…, n} such that                  

but         is as large as possible 
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recursive algorithm 

• Let K(n,W) denote the problem to solve for 
W and x1, x2, … , xn 

 

recursive algorithm 

• Let K(n,W) denote the problem to solve for 
W and x1, x2, … , xn 

 

• For n0,  

– The optimal solution for K(n,W) is the better of 
the optimal solution for either  

           K(n-1,W) or xn+K(n-1,W-xn)  

– For n=0  

 K(0,W) has a trivial solution of an empty set S with 
 weight 0 

recursive calls 

Recursive calls on list …,3, 4, 7 

K(n,W) 

K(n-1,W-7) 

K(n-3,W-7) 

K(n-2,W-4) 

K(n-1,W) 

K(n-2,W-7) 

K(n-3,W-7) 
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common sub-problems 

• Only sub-problems are K(i,w) for 

– i  = 0,1,..., n 

– w = 0,1,..., W 

• Dynamic programming solution 

– Table entry for each K(i,w) 

OPT - value of optimal soln for first i objects and weight w 

belong flag - is xi a part of this solution? 

– Initialize OPT[0,w] for w=0,...,W 

– Compute all OPT[i,*] from OPT[i-1,*] for i0 

dynamic knapsack algorithm 

for w=0 to W;  OPT[0,w]  0;   end for 

for i=1 to n do 

for w=0 to W do 

   OPT[i,w]OPT[i-1,w] 

   belong[i,w]0 

if  w  xi then 
    val xi+OPT[i-1,w-xi] 
    if valOPT[i,w] then 
  OPT[i,w]val 
     belong[i,w]1 

end for 

end for 

return(OPT[n,W]) 

Time O(nW) 

sample execution on 2, 3, 4, 7 with W=15 saving space 

• To compute the value OPT of the solution 

only need to keep the last two rows of OPT 

at each step 

 

• What about determining the set S? 

– Follow the belong flags O(n) time 

– What about space? 



2/9/2014 

6 

three steps to dynamic programming 

• Formulate the answer as a recurrence relation or 
recursive algorithm 

 

• Show that the number of different values of 
parameters in the recursive algorithm is “small” 

– e.g., bounded by a low-degree polynomial 
 

• Specify an order of evaluation for the recurrence 
so that you already have the partial results ready 
when you need them. 

RNA secondary structure 

• RNA: sequence of bases  

– String over alphabet {A, C, G, U} 

    U-G-U-A-C-C-G-G-U-A-G-U-A-C-A 

• RNA folds and sticks to itself like a zipper 

– A bonds to U 

– C bonds to G 

– Bends can’t be sharp 

– No twisting or criss-crossing 

• How the bonds line up is called the RNA secondary 

structure      

 

RNA secondary structure 
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RNA secondary structure 

• Input: String x1...xn{A,C,G,U}* 

• Output: Maximum size set S of pairs (i,j) 

such that 

– {xi,xj}={A,U} or {xi,xj} ={C,G} 

– The pairs in S form a matching 

– i<j-4  (no sharp bends) 

– No crossing pairs 

If (i,j) and (k,l) are in S then it is not the case that they 
cross as in i<k<j<l 

 

recursive solution 

Try all possible matches for the last base 

j k 

OPT(1..k-1) OPT(k+1..j-1) 

1 

Doesn’t start at 1 

OPT(1..j)=MAX(OPT(1..j-1),1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1)) 

xk matches xj 

OPT(i..j)=MAX(OPT(i..j-1), 

                         1+MAXk=i..j-5 (OPT(i..k-1)+OPT(k+1..j-1))) 
xk matches xj 

General form: 

recursive solution 

Try all possible matches for the last base 

j k 

OPT(1..k-1) OPT(k+1..j-1) 

1 

RNA secondary structure 

• 2D Array OPT(i,j) for i≤j represents optimal # of matches 
entirely for segment i..j 

• For j-i ≤4 set OPT(i,j)=0  (no sharp bends) 

• Then compute OPT(i,j) values when   

    j-i=5,6,...,n-1 in turn using recurrence.   

• Return OPT(1,n) 

• Total of O(n3) time 

• Can also record matches along the way to produce S 

– Algorithm is similar to the polynomial-time algorithm for Context-
Free Languages based on Chomsky Normal Form from 322  

– Both use dynamic programming over intervals 
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sequence alignment:  edit distance 

• Given: 

– Two strings of characters A=a1 a2 ... an and 

B=b1 b2 ... bm 

• Find:  

– The minimum number of edit steps needed to 

transform A into B where an edit can be: 

– insert a single character 

– delete a single character 

– substitute one character by another 

sequence alignment vs editdDistance 

• Sequence Alignment 

– Insert corresponds to aligning with a “–” in the first 
string 

Cost d  (in our case 1) 

– Delete corresponds to aligning with a “–” in the second 
string 

Cost d (in our case 1) 

– Replacement of an a by a b corresponds to a mismatch 

Cost aab (in our case 1 if ab and 0 if a=b) 

• In Computational Biology this alignment algorithm 
is attributed to Smith & Waterman 

applications 

• "diff" utility – where do two files differ 

• Version control & patch distribution – 

save/send only changes 

• Molecular biology 

– Similar sequences often have similar origin and 

function 

– Similarity often recognizable despite millions or 

billions of years of evolutionary divergence 

32 
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recursive solutions 

• Sub-problems: Edit distance problems for all 

prefixes of A and B that don’t include all of 

both A and B 

 

• Let D(i,j) be the number of edits required to 

transform a1 a2 ... ai into     b1 b2 ... bj 

 

• Clearly D(0,0)=0 

 

computing D(n,m) 

• Imagine how best sequence handles the 

last characters an and bm 

• If best sequence of operations 

– deletes an then D(n,m)=D(n-1,m)+1 

– inserts bm then D(n,m)=D(n,m-1)+1 

– replaces an by bm then                                         

D(n,m)=D(n-1,m-1)+1 

– matches an and bm then                          

D(n,m)=D(n-1,m-1) 

recursive algorithm D(n,m) 

if  n=0  then 

return (m) 

else if  m=0  then 

return(n) 

else 

if  an=bm  then  

replace-cost  0 

else 

replace-cost  1 

endif 

return(min{  D(n-1, m) + 1,                                                                                

          D(n, m-1) + 1,                                                              

                     D(n-1, m-1) + replace-cost } ) 

cost of substitution of an by bm (if used) 

for j = 0 to m;  D(0,j)  j; endfor 

for i = 1 to n;  D(i,0)  i; endfor 

for i = 1 to n 

for j = 1 to m 

if  ai=bj then  

replace-cost  0 

else 

replace-cost  1 

endif 

D(i,j)   min {  D(i-1, j) + 1,                                                                                 
                       D(i, j-1) + 1,                                                                    
    D(i-1, j-1) + replace-cost} 

endfor 

endfor 

dynamic programming 

D(i-1, j-1) 
 

 

 

D(i-1, j) 
 

 

D(i, j-1) 
 

 

D(i, j) 

 

 
ai 

bj 
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bj-1 
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. . . 
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example run with AGACATTG  and GAGTTA 

         A       G      A      C       A       T       T      G 

0       1       2      3      4       5       6       7      8 

    0 

G  1 

A  2 

G  3 

T  4 

T  5 

A  6 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2 

3 

4 

5 

6 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1 

4 

5 

6 

3 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4 

5 

6 
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example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4      3    2     2      3     3     3     4      5 

5      4    3     3      3     4     3     3      4                   

6      5    4     3      4     3     4     4      4 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4      3    2     2      3     3     3     4      5 

5      4    3     3      3     4     3     3      4                   

6      5    4     3      4     3     4     4      4 

example run with AGACATTG  and GAGTTA 

A    G     A     C     A      T     T     G 

0      1    2     3      4     5     6     7      8 

1      1    1     2      3     4     5     6      7 

2      1    2     1      2     3     4     5      6 

3      2    1     2      2     3     4     5      5  

4      3    2     2      3     3     3     4      5 

5      4    3     3      3     4     3     3      4                   

6      5    4     3      4     3     4     4      4 


