Winter 2014
Lecture 13: Dynamic programming
Reading:
Sections 6.1-6.3

greedy algorithm?

weighted interval scheduling

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.

dynamic programming
Dynamic Programming
- Give a solution of a problem using smaller subproblems where the parameters of all the possible sub-problems are determined in advance
- Useful when the same sub-problems show up again and again in the solution
computing fibonaci numbers
- Recall $F_{n}=F_{n-1}+F_{n-2}$ and $F_{0}=0, F_{1}=1$
- Recursive algorithm:
full call tree

memoization (caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
- Convert memoized algorithm from a recursive one to an iterative one
finboacci: dynamic programming

```
FiboDP(n):
    F[0]}\leftarrow
    F[1] \leftarrow1
    for i=2 to n do
            F[i]}\leftarrow\textrm{F}[i-1]+\textrm{F}[i-2
        endfor
        return(F[n])
```

dynamic programming

Useful when:

- Same recursive sub-problems occur repeatedly
- Can anticipate the parameters of these recursive calls
- The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
principle of optimality:
"Optimal solutions to the sub-problems suffice for optimal
solution to the whole problem"

```
FiboDP(n):
    prev \(\leftarrow 0\)
    curr \(\leftarrow 1\)
    for \(\mathrm{i}=\mathbf{2}\) to n do
        temp \(\leftarrow\) curr
        curr \(\leftarrow\) curr + prev
        prev \(\leftarrow\) temp
    endfor
    return(curr)
```

three steps to dynamic programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is "small"
- e.g., bounded by a low-degree polynomial
- Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

weighted interval scheduling

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.

step 1 - a recursive algorithm

Two cases depending on whether an optimal solution \mathcal{O} includes request n

- If it does include request n ...

step 1 - a recursive algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_{i} so

$$
f_{1} \leq f_{2} \leq \cdots \leq f_{n}
$$

- Say request i comes before request j if $\mathrm{i}<j$
- For any request \mathbf{j} let $\mathbf{p}(\mathbf{j})$ be
- the largest-numbered request before j that is compatible with j
- or 0 if no such request exists
- Therefore $\{\mathbf{1}, \ldots, \mathrm{p}(\mathrm{j})\}$ is precisely the set of requests before j that are compatible with j

step 1 - a recursive algorithm

Two cases depending on whether an optimal solution \mathcal{O} includes request n

- If it does include request n then all other requests in \mathcal{O} must be contained in $\{1, \ldots, p(n)\}$ Not only that!

Any set of requests in $\{\mathbf{1}, \ldots, \mathbf{p}(\mathbf{n})\}$ will be compatible with request \mathbf{n}
So in this case the optimal solution $\boldsymbol{\mathcal { O }}$ must contain an optimal solution for $\{\mathbf{1}, \ldots, \mathrm{p}(\mathrm{n})\}$
"Principle of Optimality"

Two cases depending on whether an optimal solution \mathcal{O} includes request n

- If it does include request n ...

Two cases depending on whether an optimal solution \mathcal{O} includes request n

- If it does not include request \boldsymbol{n} then all requests in 0 must be contained in $\{1, \ldots, n-1\}$
Not only that!
The optimal solution \mathcal{O} must contain an optimal
solution for $\{\mathbf{1}, \ldots, \mathrm{n}-\mathbf{1}\}$
"Principle of Optimality"

step 1 - a recursive algorithm

- All subproblems involve requests $\{1, . .$, i $\}$ for some i
- For $\mathrm{i}=1, \ldots, \mathrm{n}$ let OPT(i) be the weight of the optimal solution to the problem $\{1, \ldots$, i\}
- The two cases give $\operatorname{OPT}(n)=\max \left[w_{n}+\operatorname{OPT}(\boldsymbol{p}(n)), \mathbf{O P T}(n-1)\right]$
- Also

$$
n \in \mathcal{O} \text { iff } w_{n}+O P T(p(n))>O P T(n-1)
$$

step 1 - a recursive algorithm

First, sort requests and compute array $p[i]$ for each $i=1, \ldots, n$.

ComputeOpt(n)
if $\mathrm{n}=0$ then return $(\mathbf{0})$
else
$\mathbf{u} \leftarrow$ ComputeOpt(p[n])
$\mathrm{v} \leftarrow$ ComputeOpt($\mathrm{n}-1$)
if $\mathbf{w}_{\mathrm{n}}+\mathbf{u}>\boldsymbol{v}$ then
return $\left(w_{n}+u\right)$
else
return(v)
endif

step 2 - memoization

ComputeOpt(n): if $\mathbf{n}=\mathbf{0}$ then return($\mathbf{0}$) else	MComputeOpt(n): if OPT[n] $=0$ then $\mathbf{v} \leftarrow$ ComputeOpt(n)
$\mathbf{u} \leftarrow$ MComputeOpt(p[n]) $\mathbf{v} \leftarrow$ MComputeOpt($n-1$)	OPT $[\mathrm{n}] \leftarrow \mathrm{v}$ return(v)
if $\mathbf{w}_{\mathbf{n}}+\mathbf{u}>\mathbf{v}$ then return $\left(\mathbf{w}_{\mathrm{n}}+\mathbf{u}\right)$	else return(OPT[n])
else return(v)	endif
endif	

step 2 - memoization

- ComputeOpt(n) can take exponential time in the worst case
-2^{n} calls if $p(i)=i-1$ for every i
- There are only n possible parameters to ComputeOpt
- Store these answers in an array OPT[n] and only recompute when necessary
- Memoization
- Initialize OPT[i]=0 for $\mathrm{i}=1, \ldots, \mathrm{n}$
step 3 - iterative solution
The recursive calls for parameter n have parameter values it that are $<\mathbf{n}$

step 3 - iterative solution

The recursive calls for parameter \boldsymbol{n} have parameter values ithat are $<\mathbf{n}$

IterativeComputeOpt(n)
array OPT[0,...,n]
OPT[0] $\leftarrow 0$
for $i=1$ to n
if $w_{i}+O P T[p[i]]>0 P T[i-1]$ then OPT[i] $\leftarrow \mathbf{w}_{1}+$ OPT[p[i]]
else OPT $[i] \leftarrow$ OPT $[i-1]$
endif
endfor

producing an optimal solution

producing an optimal solution

IterativeComputeOptSolution(n)
array OPT[0,...,n], Used[1,...,n] OPT[0] $\leftarrow 0$
for $i=1$ to n
if $\mathbf{w}_{1}+$ OPT $[p[i]]>O P T[i-1]$ then OPT[i] $\leftarrow \mathbf{w}_{\mathrm{i}}+$ OPT[p[i]]
Used[i] $\leftarrow 1$
else
OPT[i] \leftarrow OPT[i-1]
Used $[i] \leftarrow 0$
endif
endfor
example

	1	2	3	4	5	6	7	8	9
	4	2	6	8	11	15	11	12	18
f_{i}	7	9	10	13	14	17	18	19	20
w_{i}	3	7	4	5	3	2	7	7	2
p[i]									
OPT[i]									
Used[i]									

example

	1	2	3	4	5	6	7	8	9
	4	2	6	8	11	15	11	12	18
f_{i}	7	9	10	13	14	17	18	19	20
w_{i}	3	7	4	5	3	2	7	7	2
$p[i]$	0	0	0	1	3	5	3	3	7
OPT[i]									
Used[[]									

example

s_{i}	1	2	3	4	5	6	7	8	9
	4	2	6	8	11	15	11	12	18
f_{i}	7	9	10	13	14	17	18	19	20
w_{i}	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]	3	7	7	8	10	12	14	14	16
Used[i]	1	I	0	f	1	1	1	0	1

	example								
	1	2	3	4	5	6	7	8	9
	4	2	6	8	11	15	11	12	18
f_{i}	7	9	10	13	14	17	18	19	20
w_{i}	3	7	4	5	3	2	7	7	2
$p[i]$	0	0	0	1	3	5	3	3	7
OPT[i]	3	7	7	8	10	12	14	14	16
Used[i]	1	1	0	1	1	1	1	0	1

example

segmented least squares

Least Squares

- Given a set P of n points in the plane $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ with $x_{1}<\ldots<x_{n}$ determine a line L given by $y=a x+b$ that optimizes the totaled 'squared error'
$\operatorname{Error}(\mathbf{L}, \mathbf{P})=\Sigma_{i}\left(\mathbf{y}_{\mathbf{i}}-\mathbf{a x}_{\mathbf{i}}-\mathbf{b}\right)^{2}$
- A classic problem in statistics
- Optimal solution is known (see text)

Call this line(\mathbf{P}) and its error error(\mathbf{P})

segmented least squares

What if data seems to follow a piece-wise linear model?
segmented least squares

segmented least squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose $\mathrm{n}-1$ pieces we could fit with 0 error - Not fair
- Add a penalty of \mathbf{C} times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

segmented Least Squares

Recursive idea

- If we knew the point p_{j} where the last line segment began then we could solve the problem optimally for points p_{1}, \ldots, p_{j} and combine that with the last segment to get a global optimal solution
Let OPT(i) be the optimal penalty for points $\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{\mathbf{i}}\right\}$
Total penalty for this solution would be

$$
\operatorname{Error}\left(\left\{\mathbf{p}_{\mathbf{j}}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}\right)+\mathbf{C}+\operatorname{OPT}(\mathbf{j}-\mathbf{1})
$$

segmented least squares

Recursive idea

- We don't know which point is p_{j}

But we do know that $1 \leq j \leq n$
The optimal choice will simply be the best among these possibilities

- Therefore:

$$
\begin{aligned}
& \operatorname{OPT}(\boldsymbol{n}) \\
& \quad=\min _{1 \leq j \leq n}\left\{\operatorname{Error}\left(\left\{\boldsymbol{p}_{j}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}\right\}\right)+\boldsymbol{C}+\operatorname{OPT}(\boldsymbol{j}-\mathbf{1})\right\}
\end{aligned}
$$

dynamic programming solution

```
SegmentedLeastSquares(n)
    array OPT[0,...n], Begin[1,...,n]
    OPT[0]}\leftarrow
    for i=1 to n
    OPT[i]\leftarrowError{(p, (.,.,}\mp@subsup{p}{1}{})}+
    Begin[i]\leftarrow1
    for j=2 to l-1
    e\leftarrowError{(\mp@subsup{p}{j}{},\ldots,\mp@subsup{p}{i}{})}+C+OPT[j-1]
    if e<OPT[i] then
            OPT[i]}\leftarrow\mathbf{e
            Begin[i]}\leftarrow
        endif
    endfor
    endfor
    return(OPT[n])
```

