
2/5/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 13: Dynamic programming

Reading:

Sections 6.1-6.3

weighted interval scheduling

• Input. Set of jobs with start times, finish times, and weights.

• Goal. Find maximum weight subset of mutually compatible jobs.

Time

0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

greedy algorithm?

No criterion seems to work

– Earliest start time si

Doesn’t work

– Shortest request time fi-si

Doesn’t work

– Fewest conflicts

Doesn’t work

– Earliest finish fime fi

Doesn’t work

– Largest weight wi

Doesn’t work

dynamic programming

Dynamic Programming

– Give a solution of a problem using smaller sub-

problems where the parameters of all the

possible sub-problems are determined in

advance

– Useful when the same sub-problems show up

again and again in the solution

2/5/2014

2

computing fibonaci numbers

• Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

• Recursive algorithm:

call tree

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

full call tree

F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3) F (3)

F (1) F (0)

1 0

F (0)

0 1

F (1)

F (1) F (0)

1 0
F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

memoization (caching)

• Remember all values from previous
recursive calls

• Before recursive call, test to see if value has
already been computed

• Dynamic Programming

– Convert memoized algorithm from a recursive
one to an iterative one

2/5/2014

3

finboacci: dynamic programming

FiboDP(n):

 F[0] 0

 F[1] 1

 for i=2 to n do

 F[i]F[i-1]+F[i-2]

 endfor

 return(F[n])

fibonacci: space saving dynamic program

FiboDP(n):

 prev  0

 curr  1

 for i = 2 to n do

 temp  curr

 curr  curr + prev

 prev  temp

 endfor

 return(curr)

dynamic programming

Useful when:

– Same recursive sub-problems occur repeatedly

– Can anticipate the parameters of these
recursive calls

– The solution to whole problem can be figured
out with knowing the internal details of how the
sub-problems are solved

principle of optimality:
“Optimal solutions to the sub-problems suffice for optimal
solution to the whole problem”

three steps to dynamic programming

• Formulate the answer as a recurrence relation or
recursive algorithm

• Show that the number of different values of
parameters in the recursive calls is “small”

– e.g., bounded by a low-degree polynomial

– Can use memoization

• Specify an order of evaluation for the recurrence
so that you already have the partial results ready
when you need them.

2/5/2014

4

weighted interval scheduling

• Input. Set of jobs with start times, finish times, and weights.

• Goal. Find maximum weight subset of mutually compatible jobs.

Time

0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

step 1 – a recursive algorithm

• Suppose that like ordinary interval scheduling we have

first sorted the requests by finish time fi so

 f1  f2  ⋯  fn

• Say request i comes before request j if i j

• For any request j let p(j) be

– the largest-numbered request before j that is

compatible with j

– or 0 if no such request exists

• Therefore {1,…,p(j)} is precisely the set of requests

before j that are compatible with j

step 1 – a recursive algorithm

Two cases depending on whether an optimal
solution 𝓞 includes request n

– If it does include request n ...

step 1 – a recursive algorithm

Two cases depending on whether an optimal
solution 𝓞 includes request n

– If it does include request n then all other
requests in 𝓞 must be contained in {1,…,p(n)}

Not only that!

Any set of requests in {1,…,p(n)} will be compatible
with request n

So in this case the optimal solution 𝓞 must contain an
optimal solution for {1,…,p(n)}

“Principle of Optimality”

2/5/2014

5

step 1 – a recursive algorithm

Two cases depending on whether an optimal
solution 𝓞 includes request n

– If it does include request n ...

step 1 – a recursive algorithm

Two cases depending on whether an optimal

solution 𝓞 includes request n

– If it does not include request n then all requests

in 𝓞 must be contained in {1,…, n-1}

Not only that!

The optimal solution 𝓞 must contain an optimal
solution for {1,…, n-1}

“Principle of Optimality”

step 1 – a recursive algorithm

• All subproblems involve requests {1,.., i } for some i

• For i=1,…,n let OPT(i) be the weight of the optimal
solution to the problem {1, …, i}

• The two cases give:

step 1 – a recursive algorithm

• All subproblems involve requests {1,.., i } for some i

• For i=1,…,n let OPT(i) be the weight of the optimal
solution to the problem {1, …, i}

• The two cases give
 𝐎𝐏𝐓(𝒏) = max [𝒘𝒏 + 𝐎𝐏𝐓(𝒑(𝒏)), 𝐎𝐏𝐓(𝒏 − 𝟏)]

• Also

 n𝒪 iff wn+OPT(p(n))OPT(n-1)

2/5/2014

6

step 1 – a recursive algorithm

First, sort requests and compute array p[i] for each

 i = 1, …, n.

ComputeOpt(n)

if n=0 then return(0)

else

 uComputeOpt(p[n])

 vComputeOpt(n-1)

 if wn+uv then

 return(wn+u)

 else

 return(v)

endif

step 2 – memoization

• ComputeOpt(n) can take exponential time in the
worst case
– 2n calls if p(i)=i-1 for every i

• There are only n possible parameters to
ComputeOpt

• Store these answers in an array OPT[n] and only
recompute when necessary

– Memoization

• Initialize OPT[i]=0 for i=1,…,n

step 2 – memoization

ComputeOpt(n):

if n=0 then return(0)

else

 uMComputeOpt(p[n])

 vMComputeOpt(n-1)

 if wn+uv then

 return(wn+u)

 else return(v)

endif

MComputeOpt(n):

 if OPT[n]=0 then

 vComputeOpt(n)

 OPT[n]v

 return(v)

else

 return(OPT[n])

endif

step 3 – iterative solution

The recursive calls for parameter n have parameter
values i that are  n

2/5/2014

7

step 3 – iterative solution

The recursive calls for parameter n have parameter
values i that are  n

IterativeComputeOpt(n)

 array OPT[0,...,n]

 OPT[0]0

 for i=1 to n

 if wi+OPT[p[i]] OPT[i-1] then

 OPT[i] wi+OPT[p[i]]

 else

 OPT[i] OPT[i-1]

 endif

 endfor

producing an optimal solution

IterativeComputeOptSolution(n)

 array OPT[0,...,n], Used[1,...,n]

 OPT[0]0

 for i=1 to n

 if wi+OPT[p[i]] OPT[i-1] then

 OPT[i] wi+OPT[p[i]]

 Used[i]1

 else

 OPT[i]  OPT[i-1]

 Used[i] 0

 endif

 endfor

producing an optimal solution

i n

S  

while i  0 do

 if Used[i]=1 then

 S  S  {i}

 i  p[i]

 else

 i  i - 1

 endif

endwhile

IterativeComputeOptSolution(n)

 array OPT[0,...,n], Used[1,...,n]

 OPT[0]0

 for i=1 to n

 if wi+OPT[p[i]] OPT[i-1] then

 OPT[i] wi+OPT[p[i]]

 Used[i]1

 else

 OPT[i]  OPT[i-1]

 Used[i] 0

 endif

 endfor

example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

si

fi

wi

p[i]

OPT[i]

Used[i]

1 2 3 4 5 6 7 8 9

2/5/2014

8

example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

0 0 0 1 3 5 3 3 7

si

fi

wi

p[i]

OPT[i]

Used[i]

1 2 3 4 5 6 7 8 9

example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

0 0 0 1 3 5 3 3 7

3 7 7 8 10 12 14 14 16

si

fi

wi

p[i]

OPT[i]

Used[i] 1 1 0 1 1 1 1 0 1

1 2 3 4 5 6 7 8 9

example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

0 0 0 1 3 5 3 3 7

3 7 7 8 10 12 14 14 16

si

fi

wi

p[i]

OPT[i]

Used[i] 1 1 0 1 1 1 1 0 1

S={9,7,2}

1 2 3 4 5 6 7 8 9

segmented least squares

Least Squares

– Given a set P of n points in the plane

p1=(x1,y1),…,pn=(xn,yn) with x1… xn determine

a line L given by y=ax+b that optimizes the

totaled ‘squared error’

 Error(L,P)=Si(yi-axi-b)2

– A classic problem in statistics

– Optimal solution is known (see text)

Call this line(P) and its error error(P)

2/5/2014

9

least squares segmented least squares

What if data seems to follow a piece-wise

linear model?

segmented least squares segmented least squares

2/5/2014

10

segmented least squares

• What if data seems to follow a piece-wise linear

model?

• Number of pieces to choose is not obvious

• If we chose n-1 pieces we could fit with 0 error

– Not fair

• Add a penalty of C times the number of pieces to

the error to get a total penalty

• How do we compute a solution with the smallest

possible total penalty?

segmented least squares

Recursive idea

– If we knew the point pj where the last line

segment began then we could solve the

problem optimally for points p1,...,pj and

combine that with the last segment to get a

global optimal solution

Let OPT(i) be the optimal penalty for points {p1,…,pi}

Total penalty for this solution would be

 Error({pj,…,pn}) + C + OPT(j-1)

segmented Least Squares segmented least squares

Recursive idea

– We don’t know which point is pj

But we do know that 1jn

The optimal choice will simply be the best among these
possibilities

– Therefore:

 OPT 𝒏
= min 𝟏𝒋𝒏 {Error({𝒑𝒋, … , 𝒑𝒏}) + 𝑪 + OPT(𝒋 − 𝟏)}

2/5/2014

11

dynamic programming solution

SegmentedLeastSquares(n)

 array OPT[0,...,n], Begin[1,...,n]

 OPT[0]0

 for i=1 to n

 OPT[i]Error{(p1,…,pi)}+C

 Begin[i]1

 for j=2 to i-1

 eError{(pj,…,pi)}+C+OPT[j-1]

 if e OPT[i] then

 OPT[i] e

 Begin[i]j

 endif

 endfor

 endfor

 return(OPT[n])

