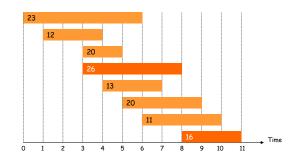
CSE 421: Algorithms

Winter 2014 Lecture 13: Dynamic programming

Reading: Sections 6.1-6.3

weighted interval scheduling

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.



greedy algorithm?

No criterion seems to work – Earliest start time s ₁ Doesn't work	
 Shortest request time f_l-s_l Doesn't work 	
 Fewest conflicts Doesn't work 	===
 Earliest finish fime f_i Doesn't work 	
 Largest weight w_I Doesn't work 	

dynamic programming

Dynamic Programming

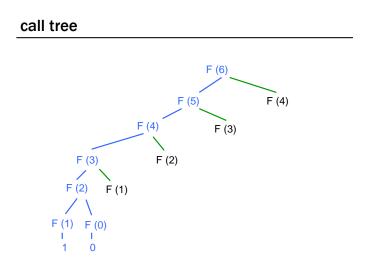
- Give a solution of a problem using smaller subproblems where the parameters of all the possible sub-problems are determined in advance
- Useful when the same sub-problems show up again and again in the solution

computing fibonaci numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$
- Recursive algorithm:

1

0



full call tree F (6) F (4) F (5) F (2) F (4) F (3) F (3) F (2) F (1) F (2) F (2) F (1) F (3) F (1) F (0) 1 1 1 F (1) F (0) 1 0 $F_{I}^{(1)}F_{I}^{(1)}F_{I}^{(1)}F_{I}^{(0)}F_{I}^{(1)}$ 1 F (2) F (0) Т н 0 0 F (1) F (0) 0

memoization (caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memoized algorithm from a recursive one to an iterative one

finboacci: dynamic programming

FiboDP(n): $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for i=2 to n do $F[i] \leftarrow F[i-1]+F[i-2]$ endfor return(F[n])

fibonacci: space saving dynamic program

```
FiboDP(n):

prev \leftarrow 0

curr \leftarrow 1

for i = 2 to n do

temp \leftarrow curr

curr \leftarrow curr + prev

prev \leftarrow temp

endfor

return(curr)
```

dynamic programming

Useful when:

- Same recursive sub-problems occur repeatedly
- Can anticipate the parameters of these recursive calls
- The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved

principle of optimality:

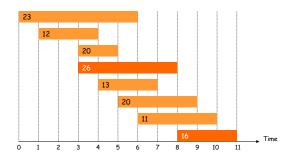
"Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

three steps to dynamic programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is "small"
 - e.g., bounded by a low-degree polynomial
 - Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

weighted interval scheduling

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.



step 1 – a recursive algorithm

 Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f₁ so

 $f_1 \leq f_2 \leq \cdots \leq f_n$

- Say request i comes before request j if i< j
- For any request **j** let **p(j**) be
 - the largest-numbered request before j that is compatible with j
 - or **0** if no such request exists
- Therefore {1,...,p(j)} is precisely the set of requests before j that are compatible with j

step 1 – a recursive algorithm

Two cases depending on whether an optimal solution *O* includes request **n**

- If it does include request n ...

step 1 - a recursive algorithm

Two cases depending on whether an optimal solution *O* includes request **n**

 If it does include request n then all other requests in *O* must be contained in {1,...,p(n)} Not only that!

Any set of requests in $\{1,...,p(n)\}$ will be compatible with request n

So in this case the optimal solution *O* must contain an optimal solution for {1,...,p(n)} "Principle of Optimality"

step 1 – a recursive algorithm

Two cases depending on whether an optimal solution *O* includes request **n**

- If it **does** include request **n** ...

step 1 – a recursive algorithm

```
Two cases depending on whether an optimal solution O includes request n

If it does not include request n then all requests in O must be contained in {1,..., n-1}
Not only that!
The optimal solution O must contain an optimal solution for {1,..., n-1}
"Principle of Optimality"
```

step 1 – a recursive algorithm

- All subproblems involve requests {1,.., i } for some i
- For i=1,...,n let OPT(i) be the weight of the optimal solution to the problem {1, ..., i}
- The two cases give:

step 1 – a recursive algorithm

- All subproblems involve requests {1,..., i } for some i
- For i=1,...,n let OPT(i) be the weight of the optimal solution to the problem {1, ..., i}
- The two cases give $OPT(n) = \max[w_n + OPT(p(n)), OPT(n-1)]$
- Also

```
n \in \mathcal{O} iff w_n + OPT(p(n)) > OPT(n-1)
```

step 1 – a recursive algorithm

First, sort requests and compute array p[i] for each i = 1, ..., n.

ComputeOpt(n) if n=0 then return(0) else u←ComputeOpt(p[n]) v←ComputeOpt(n-1) if w_n+u>v then return(w_n+u) else return(v) endif

step 2 - memoization

- ComputeOpt(n) can take exponential time in the worst case
 - 2ⁿ calls if **p(i)=i-1** for every i
- There are only **n** possible parameters to ComputeOpt
- Store these answers in an array OPT[n] and only recompute when necessary

 Memoization
- Initialize OPT[i]=0 for i=1,...,n

step 2 - memoization

ComputeOpt(n):	MComputeOpt(n):
if n= 0 then return(0)	if OPT[n]=0 then
else	v←ComputeOpt(n)
u←MComputeOpt(p [n]) v←MComputeOpt(n-1) if w _n +u>v then return(w _n +u) else return(v)	OPT[n]←v return(v) else return(OPT[n]) endif
endif	

step 3 – iterative solution

The recursive calls for parameter ${\boldsymbol n}$ have parameter values ${\boldsymbol i}$ that are $<{\boldsymbol n}$

step 3 – iterative solution

The recursive calls for parameter \boldsymbol{n} have parameter values \boldsymbol{i} that are $<\boldsymbol{n}$

```
IterativeComputeOpt(n)

array OPT[0,...,n]

OPT[0]←0

for i=1 to n

if w<sub>i</sub>+OPT[p[i]]>OPT[i-1] then

OPT[i] ←w<sub>i</sub>+OPT[p[i]]

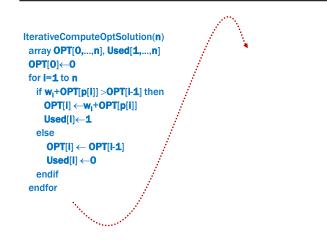
else

OPT[i] ←OPT[i-1]

endif

endif
```

producing an optimal solution



producing an optimal solution

IterativeComputeOptSolution(n) array OPT[0,,n], Used[1,,n] OPT[0] \leftarrow 0 for I=1 to n if w _i +OPT[p[i]] >OPT[I-1] then OPT[I] \leftarrow w _i +OPT[p[i]] Used[I] \leftarrow 1 else OPT[I] \leftarrow OPT[I-1] Used[I] \leftarrow 0 endif	$i \leftarrow n$ $S \leftarrow \emptyset$ while i > 0 do if Used[i]=1 then $S \leftarrow S \cup \{i\}$ $i \leftarrow p[i]$ else $i \leftarrow i \cdot 1$ endif endwhile
endfor	endwrille

example

	1	2	3	4	5	6	7	8	9
c	4	2	6	8	11	15	11	12	18
s _i f _i	7	9	10	13	14	17	18	19	20
w _i	3	7	4	5	3	2	7	7	2
p[i]									
OPT[i]									
Used[i]									

example

	1	2	3	4	5	6	7	8	9
s _i	4	2	6	8	11	15	11	12	18
f _i	7	9	10	13	14	17	18	19	20
w _i	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]									
Used[i]									

example

	1	2	3	4	5	6	7	8	9
s _i	4	2	6	8	11	15	11	12	18
f _i	7	9	10	13	14	17	18	19	20
w _i	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]	3	7	7	8	10	12	14	14	16
Used[i]	1	1	0	1	1	1	1	0	1

example

	1	2	3	4	5	6	7	8	9
s _i	4	2	6	8	11	15	11	12	18
f _i	7	9	10	13	14	17	18	19	20
w _i	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]	3	7	7	8	10	12	14	14	16
Used[i]	1	1	0	1	1	1	1	0	1

S={9,7,2}

segmented least squares

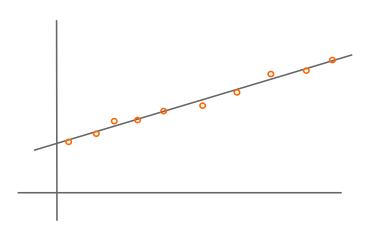
Least Squares

- Given a set P of n points in the plane $p_1=(x_1,y_1),...,p_n=(x_n,y_n)$ with $x_1<...< x_n$ determine a line L given by y=ax+b that optimizes the totaled 'squared error'

$Error(L,P)=\Sigma_i(y_i-ax_i-b)^2$

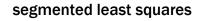
- A classic problem in statistics
- Optimal solution is known (see text)
 Call this line(P) and its error error(P)

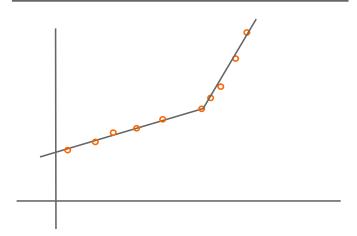
least squares

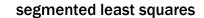


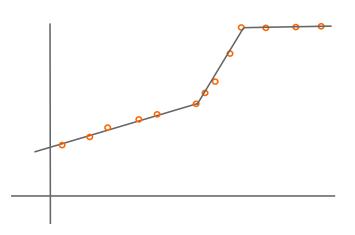
segmented least squares

What if data seems to follow a piece-wise linear model?









segmented least squares

- What if data seems to follow a piece-wise linear model?
- · Number of pieces to choose is not obvious
- If we chose n-1 pieces we could fit with 0 error
 Not fair
- Add a penalty of C times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

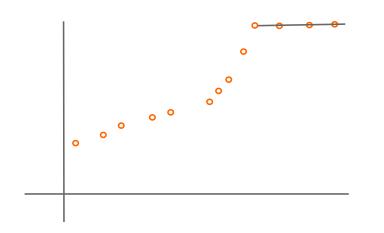
segmented least squares

Recursive idea

 If we knew the point p_j where the last line segment began then we could solve the problem optimally for points p₁,...,p_j and combine that with the last segment to get a global optimal solution

Let OPT(i) be the optimal penalty for points $\{p_1,...,p_i\}$ Total penalty for this solution would be Error($\{p_j,...,p_n\}$) + C + OPT(j-1)

segmented Least Squares



segmented least squares

Recursive idea

- We don't know which point is **p**_i

But we do know that 1≤j≤n

The optimal choice will simply be the best among these possibilities

– Therefore:

0PT(**n**)

$$= \min_{1 \le j \le n} \left\{ \operatorname{Error}(\{\boldsymbol{p}_j, \dots, \boldsymbol{p}_n\}) + \boldsymbol{C} + \operatorname{OPT}(\boldsymbol{j-1}) \right\}$$

dynamic programming solution

```
\begin{array}{l} \mbox{SegmentedLeastSquares(n)} \\ \mbox{array OPT[0,...,n], Begin[1,...,n]} \\ \mbox{OPT[0]}{\leftarrow} 0 \\ \mbox{for i=1 to n} \\ \mbox{OPT[i]}{\leftarrow} Error\{(p_1,...,p_l)\} + C \\ \mbox{Begin[i]}{\leftarrow} 1 \\ \mbox{for j=2 to I-1} \\ \mbox{e}{\leftarrow} Error\{(p_1,...,p_l)\} + C + OPT[j-1] \\ \mbox{if } e < OPT[i] \mbox{then} \\ \mbox{OPT[i]} \leftarrow e \\ \mbox{Begin[i]}{\leftarrow} J \\ \mbox{endif} \\ \mbox{endif} \\ \mbox{endfor} \\ \mbox{return}(OPT[n]) \end{array}
```