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CSE 421: Algorithms 

Winter 2014 

Lecture 13:  Dynamic programming 

 

Reading: 

Sections 6.1-6.3 

weighted interval scheduling 

• Input.  Set of jobs with start times, finish times, and weights. 

• Goal.  Find maximum weight subset of mutually compatible jobs. 

Time 

0 1 2 3 4 5 6 7 8 9 10 11 

20 

11 

16 

13 

23 

12 

20 

26 

greedy algorithm? 

No criterion seems to work 

– Earliest start time si 

Doesn’t work 

 

– Shortest request time fi-si 

Doesn’t work 

 

– Fewest conflicts  

Doesn’t work 

 

– Earliest finish fime fi 

Doesn’t work 

 

– Largest weight wi 

Doesn’t work 

dynamic programming 

Dynamic Programming 

 

– Give a solution of a problem using smaller sub-

problems where the parameters of all the 

possible sub-problems are determined in 

advance 

 

– Useful when the same sub-problems show up 

again and again in the solution 
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computing fibonaci numbers 

• Recall Fn=Fn-1+Fn-2  and F0=0, F1=1 
 

• Recursive algorithm: 

call tree 
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memoization (caching) 

• Remember all values from previous 
recursive calls 

 

• Before recursive call, test to see if value has 
already been computed 

 

• Dynamic Programming 

– Convert memoized algorithm from a recursive 
one to an iterative one 
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finboacci: dynamic programming 

FiboDP(n):                                                      

 F[0] 0                                                     

 F[1] 1                                                  

 for i=2 to n do                                                

  F[i]F[i-1]+F[i-2]                                  

 endfor                                                   

 return(F[n]) 

fibonacci:  space saving dynamic program 

FiboDP(n):                                                      

 prev  0                                                     

 curr  1                                                  

 for i = 2 to n do                                      

  temp  curr                                      

  curr  curr + prev                                           

  prev  temp                                    

 endfor                                                   

 return(curr) 

dynamic programming 

Useful when: 

– Same recursive sub-problems occur repeatedly 

– Can anticipate the parameters of these 
recursive calls 

– The solution to whole problem can be figured 
out with knowing the internal details of how the 
sub-problems are solved 

principle of optimality: 
“Optimal solutions to the sub-problems suffice for optimal 
solution to the whole problem”  

 

three steps to dynamic programming 

• Formulate the answer as a recurrence relation or 
recursive algorithm 

 

• Show that the number of different values of 
parameters in the recursive calls is “small” 

– e.g., bounded by a low-degree polynomial 

– Can use memoization 
 

• Specify an order of evaluation for the recurrence 
so that you already have the partial results ready 
when you need them. 
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weighted interval scheduling 

• Input.  Set of jobs with start times, finish times, and weights. 

• Goal.  Find maximum weight subset of mutually compatible jobs. 
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step 1 – a recursive algorithm 

• Suppose that like ordinary interval scheduling we have 

first sorted the requests by finish time fi so  

  f1  f2   ⋯  fn 

• Say request i comes before request j if i j 

• For any request j let p(j) be  

– the largest-numbered request before j that is 

compatible with j 

– or 0 if no such request exists 

• Therefore {1,…,p(j)} is precisely the set of requests 

before j that are compatible with j 

step 1 – a recursive algorithm 

Two cases depending on whether an optimal 
solution 𝓞 includes request n 

– If it does include request n ... 

step 1 – a recursive algorithm 

Two cases depending on whether an optimal 
solution 𝓞 includes request n 

– If it does include request n then all other 
requests in 𝓞 must be contained in {1,…,p(n)} 

Not only that! 

Any set of requests in {1,…,p(n)} will be compatible 
with request n 

So in this case the optimal solution 𝓞 must contain an 
optimal solution for {1,…,p(n)} 

“Principle of Optimality” 
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step 1 – a recursive algorithm 

Two cases depending on whether an optimal 
solution 𝓞 includes request n 

– If it does include request n ... 

step 1 – a recursive algorithm 

Two cases depending on whether an optimal 

solution 𝓞 includes request n 

– If it does not include request n then all requests 

in 𝓞 must be contained in {1,…, n-1} 

Not only that! 

The optimal solution 𝓞 must contain an optimal 
solution for {1,…, n-1} 

“Principle of Optimality” 

step 1 – a recursive algorithm 

• All subproblems involve requests {1,.., i } for some i 
 

• For i=1,…,n let OPT(i) be the weight of the optimal 
solution to the problem {1, …, i} 

 

• The two cases give: 
 

step 1 – a recursive algorithm 

• All subproblems involve requests {1,.., i } for some i 
 

• For i=1,…,n let OPT(i) be the weight of the optimal 
solution to the problem {1, …, i} 

 

• The two cases give 
    𝐎𝐏𝐓(𝒏) = max [𝒘𝒏 + 𝐎𝐏𝐓(𝒑(𝒏)), 𝐎𝐏𝐓(𝒏 − 𝟏)] 

 

• Also  

 n𝒪   iff   wn+OPT(p(n))OPT(n-1) 
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step 1 – a recursive algorithm 

First, sort requests and compute array p[i] for each    

 i = 1, …, n. 

ComputeOpt(n) 

if n=0 then return(0) 

else 

 uComputeOpt(p[n]) 

 vComputeOpt(n-1) 

 if wn+uv then 

  return(wn+u) 

 else 

  return(v) 

endif 

 

step 2 – memoization  

• ComputeOpt(n) can take exponential time in the 
worst case  
– 2n calls if p(i)=i-1 for every i 

 

• There are only n possible parameters to 
ComputeOpt 

 

• Store these answers in an array OPT[n] and only 
recompute when necessary 

– Memoization 
 

• Initialize OPT[i]=0 for i=1,…,n 

step 2 – memoization  

ComputeOpt(n): 

if n=0 then return(0) 

else 

 uMComputeOpt(p[n]) 

 vMComputeOpt(n-1) 

 if wn+uv then  

     return(wn+u) 

 else return(v) 

endif 

 

MComputeOpt(n): 

 if OPT[n]=0 then  

 vComputeOpt(n) 

 OPT[n]v 

 return(v) 

else 

 return(OPT[n]) 

endif 

 

step 3 – iterative solution 

The recursive calls for parameter n have parameter 
values i that are  n 
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step 3 – iterative solution 

The recursive calls for parameter n have parameter 
values i that are  n 

 

IterativeComputeOpt(n) 

 array OPT[0,...,n] 

 OPT[0]0 

 for i=1 to n  

   if wi+OPT[p[i]] OPT[i-1] then 

    OPT[i] wi+OPT[p[i]] 

   else 

    OPT[i] OPT[i-1] 

   endif 

 endfor 

producing an optimal solution 

 

IterativeComputeOptSolution(n) 

  array OPT[0,...,n], Used[1,...,n] 

  OPT[0]0 

  for i=1 to n  

     if wi+OPT[p[i]] OPT[i-1] then 

        OPT[i] wi+OPT[p[i]] 

        Used[i]1 

     else 

         OPT[i]  OPT[i-1] 

         Used[i] 0 

     endif 

  endfor 

producing an optimal solution 

i n 

S   

while i  0 do 

 if Used[i]=1 then 

  S  S  {i} 

            i  p[i] 

      else 

  i  i - 1 

      endif 

endwhile 

      

      

 

IterativeComputeOptSolution(n) 

  array OPT[0,...,n], Used[1,...,n] 

  OPT[0]0 

  for i=1 to n  

     if wi+OPT[p[i]] OPT[i-1] then 

        OPT[i] wi+OPT[p[i]] 

        Used[i]1 

     else 

         OPT[i]  OPT[i-1] 

         Used[i] 0 

     endif 

  endfor 

example 

4 2 6 8 11 15 11 12 18 

7 9 10 13 14 17 18 19 20 

3 7 4 5 3 2 7 7 2 

si 

fi 

wi 

p[i] 

OPT[i] 

Used[i] 

1         2        3        4         5        6        7         8        9     
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example 

4 2 6 8 11 15 11 12 18 

7 9 10 13 14 17 18 19 20 

3 7 4 5 3 2 7 7 2 

0 0 0 1 3 5 3 3 7 

si 

fi 

wi 

p[i] 

OPT[i] 

Used[i] 

1         2        3        4         5        6        7         8        9     

example 

4 2 6 8 11 15 11 12 18 

7 9 10 13 14 17 18 19 20 

3 7 4 5 3 2 7 7 2 

0 0 0 1 3 5 3 3 7 

3 7 7 8 10 12 14 14 16 

si 

fi 

wi 

p[i] 

OPT[i] 

Used[i] 1         1        0        1         1        1        1         0        1     

1         2        3        4         5        6        7         8        9     

example 

4 2 6 8 11 15 11 12 18 

7 9 10 13 14 17 18 19 20 

3 7 4 5 3 2 7 7 2 

0 0 0 1 3 5 3 3 7 

3 7 7 8 10 12 14 14 16 

si 

fi 

wi 

p[i] 

OPT[i] 

Used[i] 1         1        0        1         1        1        1         0        1     

S={9,7,2} 

1         2        3        4         5        6        7         8        9     

segmented least squares 

Least Squares 

– Given a set P of n points in the plane 

p1=(x1,y1),…,pn=(xn,yn) with x1… xn determine 

a line L given by y=ax+b that optimizes the 

totaled ‘squared error’ 

 Error(L,P)=Si(yi-axi-b)2 

– A classic problem in statistics 

– Optimal solution is known (see text) 

Call this line(P) and its error error(P) 
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least squares segmented least squares 

What if data seems to follow a piece-wise 

linear model? 

 

 

segmented least squares segmented least squares 
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segmented least squares 

• What if data seems to follow a piece-wise linear 

model? 

• Number of pieces to choose is not obvious 

• If we chose n-1 pieces we could fit with 0 error 

– Not fair 

• Add a penalty of C times the number of pieces to 

the error to get a total penalty 

• How do we compute a solution with the smallest 

possible total penalty? 

segmented least squares 

Recursive idea 

– If we knew the point pj where the last line 

segment began then we could solve the 

problem optimally for points p1,...,pj and 

combine that with the last segment to get a 

global optimal solution 

Let OPT(i) be the optimal penalty for points {p1,…,pi} 

Total penalty for this solution would be  

     Error({pj,…,pn}) + C + OPT(j-1) 

segmented Least Squares segmented least squares 

Recursive idea 

– We don’t know which point is pj 

But we do know that 1jn  

The optimal choice will simply be the best among these 
possibilities 

– Therefore: 

 OPT 𝒏  
= min 𝟏𝒋𝒏 {Error({𝒑𝒋, … , 𝒑𝒏})  +  𝑪 + OPT(𝒋 − 𝟏)} 
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dynamic programming solution 

 

SegmentedLeastSquares(n) 

 array OPT[0,...,n], Begin[1,...,n] 

   OPT[0]0 

   for i=1 to n 

  OPT[i]Error{(p1,…,pi)}+C 

  Begin[i]1 

  for j=2 to i-1           

   eError{(pj,…,pi)}+C+OPT[j-1] 

   if e OPT[i] then 

         OPT[i] e 

         Begin[i]j 

    endif 

  endfor 

   endfor 

   return(OPT[n]) 


