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fast exponentiation
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divide & conquer qlgorithm

* Power(a,n)
— Input: integer n and number a
— Output: a"

* Obvious algorithm
— n-1 multiplications

* Observation:
— if nis even, n=2m, then a"=aM.a™

analysis

Power(a,n):
if n=0 then
return(1)
else if n=1 then
return(a)
else
X < Power(a, |n/2])
if n is even then
return(xex)
else
return(aexex)

- Worst-case recurrence
~T(n) = T(ED +2forn>1
-T(1)=0

* Time:

* More precise analysis:
T(n) = [log,n] + # of 1's in n’s binary representation



practical application: RSA

* Instead of a" want a" mod N
— a™'mod N = ((@' mod N)«(a' mod N)) mod N
— same algorithm applies with each xsy replaced by
((x mod N)e(y mod N)) mod N

* In RSA cryptosystem (widely used for security)
— need a" mod N where a, n, N each typically have 1024
bits
— Power: at most 2048 multiplies of 1024 bit numbers
relatively easy for modern machines
— Naive algorithm: 21024 multiplies

bisection method

binary search for roots (bisection method)

Bisection(a,b,¢):
if (a-b) < ¢ then
return(a)
else
c <(at+bh)/2
if f(c) <0 then
return(Bisection(c,b,g))
else
return(Bisection(a,c,g))
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e Given:

— continuous function f and two points a<b with f(a) <0
and f(b)> 0

* Find:
— approximation to c s.t. f(¢)=0 and a<c<b

analysis

At each step we halved the size of the
interval

It started at size b-a
It ended at size ¢

# of calls to f is log, (b;a)

€
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old favorites

* Binary search
— One subproblem of half size plus one comparison
— Recurrence T(n) = T(|—n/2—|)+1 forn>2
T1)=0
So T(n)is[log, nl+1

* Mergesort

— Two subproblems of half size plus merge cost of n-1
comparisons

— Recurrence T(n) < 2T(n/2)+n-1 for n>2
T1)=0
Roughly n comparisons at each of log, n levels of recursion
So T(n) is roughly 2n log,n

closest pair in the plane

euclidean closest pair

No single direction along which one
can sort points to guarantee success!

* Given a set P of n points py,...,p, with real-valued
coordinates

* Find the pair of points p,,p, € P such that the Euclidean
distance d(p;,p;) is minimized

* O(n?) possible pairs

* In one dimension?

* What about points in the plane?

divide and conquer?

* Sort the points by their x coordinates

* Split the points into two sets of n/2 points L and R by x
coordinate

* Recursively compute
— closest pair of points in L, (p.,q,)
— closest pair of points in R, (Pg,qr)

* Let 6=min{d(p.,q,),d(pg,qr)} and let (p,q) be the pair of
points that has distance &
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clever girl

Any pair of points peL and

clever girl

q<R with d(p,q)<é must
lie in band
4
clever girl
L R

s {

Only need to check pairs
of points up to 2 rows
apart.

At most a constant #

of other polnts!

Any pair of points peL and
q<R with d(p,q)<d must
lie in band

closest pair recombining

Any pair of points peL and
q<R with d(p,q)<é must
lie in band

No two points can be in
the same grey box

No two points can be in
the same grey box

* Sort points by y coordinate ahead of time

* On recombination only compare each point in 5-band
of LUR to the 11 points in §-band of LUR above it in
the y sorted order

— If any of those distances is better than & replace (p,q) by
the best of those pairs

* O(nlog n) for x and y sorting at start

* Two recursive calls on problems on half size

* 0O(n) recombination

* Total:
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sometimes two sub-problems aren’t enough

* More general divide and conquer

— You’ve broken the problem into a different sub-
problems

— Each has size at most n/b

— The cost of the break-up and recombining the sub-

problem solutions is 0(nk)

* Recurrence: T(n)<a-T(n/b) + c-nk

master divide and conquer recurrence

master divide and conquer recurrence

* If T(n)<aT(n/b) + cnk forn > b then
—if a>b* then T(n) is 0(n'°8» )
—if a<b* then T(n) is 0(nk)
—if a = bk then T(n) is ®(n* logn)

* Works even if it is [g] instead ofg.

 If T(n)< a-T(n/b) + c-nk forn > b then
—if a>b* then T(n) is ©(n'°8> ¢)
—if a<bk then T(n) is ©(n)

—if a = b* then T(n) is O(n*logn)

proving the master recurrence

Problem size T(n)=a-T(n/b)+c-nk  # probs
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proving the master recurrence geometric series
Problem size  T(n)=a-T(n/b)+c-n% # probs e S =t+tr+trr+. +tr?
n a2 1 rS = tr +tr2+. +tri+tr
T, * (FD)S =tr" -t
nb c< o o ° a .
> L N * so S=t(r"-1)/(r-1) if r=1.
o K . ‘Q‘ K ‘0‘
n/b? 7 e o o o o @&
-c :. : 0“ :. . 0“ .
S R * Simple rule
b ° ’ e o o . .
e e —If r# 1 then S is a constant times largest term
Ran-giN Ran-giN g in series
1 e o o e o o QA
T(1)=c
total cost proving the master recurrence
* Geometric series Problem size  T(n)=a-T(n/b)+c-nk  # probs
— ratio a/bX n . x
— d+1=log,n +1 terms [ IS 1 cn
— first term cn¥, last term cad Wb o Ji a  cnk (i)
e Ifa/bk=1 3 bk
— all terms are equal T(n) is ©(nk log n) o S - 5 5
. K n/b? 7 e o o0 o o A a
If a/bk<1 i . A cnk(+5)
— first term is largest T(n) is O(nk) S S b*
. Ifa/b*>1 b e " " e o e
— last term is largest T(n) is Sty Sty
Ry '.‘ K '.‘ K a d
0(a?) = 0(a'ogr ™) = @(n'o8s ) 1 ¢« o o e o o alcn (ﬁ)
T(1)=c =ca?



