CSE 421: Algorithms

Winter 2014 Lecture 11: Divide & Conquer

	INCIPECTIVE SORIS	
Reading: Sections 5.1-5.4	DEFNC: HURHARD:04/88025047 (Jost): IF LONGH(JOST) 42: REDRO LOFT PMT = NT (LONGH(LOFT) 42) A = HURHARD:04026047 (Jost[1907]) B = HURHARD:04026047 (Jost[1907]) // VIDHETH REDRN (A, B) // HERC.	DEFNE: FRETBOOSGAT(LOT): // AND ADDED/BOOSGAT(// AND A NUMON) /REN A FRONT IN UNCLOSER(LOT)): SHUTL(COT): FEDER/COT): REDER /REDREL FRO: FRUCT(DRER COC: 2)*
	DURE STRUCTURE CLOCK (MRC) THEN DVDC FFE LEFT IN HAVE ROT ROLL HOLD THE LEFT IN HAVE ROT ROLL HOLD THE LEFT IN HAVE ROT ROLL HOLD THE ROLL THE ROLL HOLD CLOTHER LOUD LIDDON'T BE HAVE THE DARGE ROLL ROLL HOLD HOLD THE ROLL HOLD LIDDON'T BE HAVE THE DARGE ROLL HOLD HOLD HOLD HOLD HOLD THE ROLL HOLD HOLD HOLD HOLD HOLD THE ROLL HOLD HOLD HOLD ROLL IT RESCARD LIFT A ROLL HOLD HOLD HOLD HOLD ROLL IT RESCARD LIFT ROLL HOLD HOLD HOLD HOLD ROLL IT RESCARD LIFT ROLL HOLD	Dorse: Provident(urr): # Booms(urr): # Booms(urr): PRUM: Lot PRUM: Lot PRUM: Lot Provide: Urr): Provide: Urr): Provide: Urr): # Booms(urr): # Booms(urr):

INFERENTINE CORTE

divide & conquer qlgorithm

Power(a , n):
if n=0 then
return(1)
else if n=1 then
return(a)
else
x ← Power(a , [<i>n</i> /2])
if n is even then
return(x•x)
else
return(a∙x•x)

fast exponentiation

- Power(a,n)
 - Input: integer n and number a
 - Output: an
- Obvious algorithm
 - n-1 multiplications
- Observation:
 - if n is even, n=2m, then $a^n=a^m \cdot a^m$

analysis

Worst-case recurrence

$$-T(n) = T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) + 2 \text{ for } n \ge 1$$
$$-T(1) = 0$$

- Time:
- More precise analysis: $T(n) = \lceil \log_2 n \rceil + \text{\# of 1}'\text{s in n's binary representation}$

practical application: RSA

- Instead of aⁿ want aⁿ mod N
 - $a^{i+j} \mod N = ((a^i \mod N) \cdot (a^j \mod N)) \mod N$
 - same algorithm applies with each x-y replaced by $((x \bmod N) {\bf \cdot} (y \bmod N)) \bmod N$
- · In RSA cryptosystem (widely used for security)
 - need $a^n \, mod \, N$ where $a, \, n, \, N$ each typically have 1024 bits
 - Power: at most 2048 multiplies of 1024 bit numbers relatively easy for modern machines
 - Naive algorithm: 21024 multiplies

binary search for roots (bisection method)

• Given:

- continuous function f and two points a
b with f(a) ≤ 0 and f(b) > 0

• Find:

- approximation to c s.t. f(c)=0 and a<c<b

bisection method

 $\begin{array}{l} \text{Bisection}(\textbf{a},\textbf{b},\epsilon)\text{:}\\ \text{if }(\textbf{a}\textbf{-}\textbf{b})<\epsilon \ \text{then}\\ \text{return}(\textbf{a})\\ \text{else}\\ \textbf{c}\leftarrow\!(\textbf{a}\textbf{+}\textbf{b})/2\\ \text{if } \textbf{f}(\textbf{c})\leq 0 \ \text{then}\\ \text{return}(\text{Bisection}(\textbf{c},\textbf{b},\epsilon))\\ \text{else} \end{array}$

```
return(Bisection(a,c,ε))
```

analysis

- At each step we halved the size of the interval
- It started at size b-a
- It ended at size $\boldsymbol{\epsilon}$
- **#** of calls to f is $\log_2\left(\frac{b-a}{\epsilon}\right)$

old favorites

- · Binary search
 - One subproblem of half size plus one comparison
 - Recurrence T(n) = T($\lceil n/2 \rceil$)+1 for n \ge 2 T(1) = 0 So T(n) is $\lceil log_2 n \rceil$ +1
- Mergesort
 - Two subproblems of half size plus merge cost of n-1 comparisons
 - Recurrence $T(n) \leq 2T(\left\lceil n/2 \right\rceil) + n-1 \ \mbox{for} \ n \geq 2 \ T(1) = 0$

Roughly n comparisons at each of $\log_2 n$ levels of recursion So T(n) is roughly $2n \log_2 n$

euclidean closest pair

- Given a set P of n points p₁,...,p_n with real-valued coordinates
- Find the pair of points p_i, p_j ∈ P such that the Euclidean distance d(p_i, p_j) is minimized
- $\Theta(n^2)$ possible pairs
- · In one dimension?
- · What about points in the plane?

closest pair in the plane

can sort points to guarantee success!

divide and conquer?

- Sort the points by their x coordinates
- Split the points into two sets of n/2 points \boldsymbol{L} and \boldsymbol{R} by \boldsymbol{x} coordinate
- Recursively compute
 - closest pair of points in L, (p_L,q_L)
 - closest pair of points in **R**, (**p**_R,**q**_R)
- Let δ=min{d(pL,qL),d(pR,qR)} and let (p,q) be the pair of points that has distance δ

closest pair recombining

- Sort points by y coordinate ahead of time
- On recombination only compare each point in δ-band of $L \cup R$ to the **11** points in δ -band of $L \cup R$ above it in the y sorted order
 - If any of those distances is better than δ replace (**p**,**q**) by the best of those pairs
- **O(n log n)** for **x** and **y** sorting at start
- Two recursive calls on problems on half size
- O(n) recombination
- Total:

sometimes two sub-problems aren't enough

- More general divide and conquer
 - You've broken the problem into *a* different subproblems
 - Each has size at most n/b
 - The cost of the break-up and recombining the subproblem solutions is $O(n^k)$
- Recurrence: $T(n) \le a \cdot T(n/b) + c \cdot n^k$

master divide and conquer recurrence

- If $T(n) \le a \cdot T(n/b) + c \cdot n^k$ for n > b then
 - if $a > b^k$ then T(n) is $\Theta(n^{\log_b a})$
 - if $a < b^k$ then T(n) is $\Theta(n^k)$
 - if $a = b^k$ then T(n) is $\Theta(n^k \log n)$

master divide and conquer recurrence

- If $T(n) \le a \cdot T(n/b) + c \cdot n^k$ for n > b then
 - if $a > b^k$ then T(n) is $\Theta(n^{\log_b a})$
 - if $a < b^k$ then T(n) is $\Theta(n^k)$
 - if $a = b^k$ then T(n) is $\Theta(n^k \log n)$
- Works even if it is $\left[\frac{n}{b}\right]$ instead of $\frac{n}{b}$.

proving the master recurrence

proving the master recurrence

geometric series

- S = t + tr + tr² + ... + trⁿ⁻¹
- $r \cdot S = tr + tr^2 + ... + tr^{n-1} + tr^n$
- (r-1)S =trⁿ t
- so $S=t(r^n 1)/(r-1)$ if $r \neq 1$.

• Simple rule

- If $r \neq 1$ then S is a constant times largest term in series

total cost

- Geometric series
 - ratio a/b^k
 - $-d+1=log_bn+1$ terms
 - first term cnk, last term cad
- If a/b^k=1
 - all terms are equal T(n) is $\Theta(n^k \log n)$
- If a/b^k<1
 - first term is largest T(n) is $\Theta(n^k)$
- If **a/b^k>1**
 - last term is largest T(n) is

$$\Theta(a^d) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$$

proving the master recurrence

