
1/31/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 11: Divide & Conquer

Reading:

Sections 5.1-5.4

fast exponentiation

• Power(a,n)

– Input: integer n and number a

– Output: an

• Obvious algorithm

– n-1 multiplications

• Observation:

– if n is even, n=2m, then an=amam

divide & conquer qlgorithm

Power(a,n):

 if n=0 then

 return(1)

 else if n=1 then

 return(a)

 else

 x  Power(a, ⌊𝑛/2⌋)

 if n is even then

 return(xx)

 else

 return(axx)

analysis

• Worst-case recurrence

– 𝑻 𝒏 = 𝑻
𝒏

𝟐
+ 𝟐 for 𝒏 ≥ 𝟏

– 𝑻 𝟏 = 𝟎

• Time:

• More precise analysis:

𝑻 𝒏 = 𝐥𝐨𝐠𝟐𝒏 + # of 1’s in n’s binary representation

1/31/2014

2

practical application: RSA

• Instead of an want an mod N

– ai+j mod N = ((ai mod N)(aj mod N)) mod N

– same algorithm applies with each xy replaced by

((x mod N)(y mod N)) mod N

• In RSA cryptosystem (widely used for security)

– need an mod N where a, n, N each typically have 1024
bits

– Power: at most 2048 multiplies of 1024 bit numbers

relatively easy for modern machines

– Naive algorithm: 21024 multiplies

binary search for roots (bisection method)

• Given:

– continuous function f and two points ab with f(a)  0
and f(b)  0

• Find:

– approximation to c s.t. f(c)=0 and acb

bisection method

Bisection(a,b,e):

if (a-b)  e then

 return(a)

else

 c (a+b)/2

 if f(c)  0 then

 return(Bisection(c,b,e))

 else

 return(Bisection(a,c,e))

analysis

• At each step we halved the size of the

interval

• It started at size b-a

• It ended at size e

• # of calls to f is log2
𝑏−𝑎

𝜖

1/31/2014

3

old favorites

• Binary search
– One subproblem of half size plus one comparison

– Recurrence T(n) = T(n/2)+1 for n  2

 T(1) = 0

 So T(n) is log2 n+1

• Mergesort
– Two subproblems of half size plus merge cost of n-1

comparisons

– Recurrence T(n)  2T(n/2)+n-1 for n  2

 T(1) = 0

 Roughly n comparisons at each of log2 n levels of recursion

 So T(n) is roughly 2n log2 n

euclidean closest pair

• Given a set P of n points p1,…,pn with real-valued

coordinates

• Find the pair of points pi,pj  P such that the Euclidean

distance d(pi,pj) is minimized

• Q(n2) possible pairs

• In one dimension?

• What about points in the plane?

closest pair in the plane

No single direction along which one

can sort points to guarantee success!

divide and conquer?

• Sort the points by their x coordinates

• Split the points into two sets of n/2 points L and R by x
coordinate

• Recursively compute

– closest pair of points in L, (pL,qL)

– closest pair of points in R, (pR,qR)

• Let d=min{d(pL,qL),d(pR,qR)} and let (p,q) be the pair of
points that has distance d

1/31/2014

4

clever girl

d d

L R

Any pair of points pL and

qR with d(p,q)𝜹 must

lie in band

clever girl

d d

L R

Any pair of points pL and

qR with d(p,q)𝜹 must

lie in band
d/2

No two points can be in

 the same grey box

d/2

clever girl

d d

L R

Any pair of points pL and

qR with d(p,q)𝜹 must

lie in band
d/2

No two points can be in

 the same grey box

d/2

Only need to check pairs

of points up to 2 rows

apart.

At most a constant #

of other points!

closest pair recombining

• Sort points by y coordinate ahead of time

• On recombination only compare each point in d-band
of LR to the 11 points in d-band of LR above it in
the y sorted order

– If any of those distances is better than d replace (p,q) by
the best of those pairs

• O(n log n) for x and y sorting at start

• Two recursive calls on problems on half size

• O(n) recombination

• Total:

1/31/2014

5

sometimes two sub-problems aren’t enough

• More general divide and conquer

– You’ve broken the problem into 𝒂 different sub-

problems

– Each has size at most 𝒏/𝒃

– The cost of the break-up and recombining the sub-

problem solutions is 𝑶(𝒏𝒌)

• Recurrence: 𝑻 𝒏  𝒂𝑻(𝒏/𝒃) + 𝒄𝒏𝒌

master divide and conquer recurrence

• If 𝑻(𝒏) 𝒂𝑻(𝒏/𝒃) + 𝒄𝒏𝒌 for 𝒏 > 𝒃 then

– if 𝒂𝒃𝒌 then 𝑻(𝒏) is Θ 𝑛log𝑏 𝑎

– if 𝒂𝒃𝒌 then 𝑻(𝒏) is Θ 𝑛𝑘

– if 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is Θ(𝑛𝑘 log 𝑛)

master divide and conquer recurrence

• If 𝑻(𝒏) 𝒂𝑻(𝒏/𝒃) + 𝒄𝒏𝒌 for 𝒏 > 𝒃 then

– if 𝒂𝒃𝒌 then 𝑻(𝒏) is Θ 𝑛log𝑏 𝑎

– if 𝒂𝒃𝒌 then 𝑻(𝒏) is Θ 𝑛𝑘

– if 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is Θ(𝑛𝑘 log 𝑛)

• Works even if it is
𝑛

𝑏
 instead of

𝑛

𝑏
 .

proving the master recurrence

T(n)=aT(n/b)+cnk

a

Problem size # probs

T(1)=c

1/31/2014

6

proving the master recurrence

T(n)=aT(n/b)+cnk

a
n

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

T(1)=c

geometric series

• S = t + tr + tr2 + ... + trn-1

• rS = tr + tr2 + ... + trn-1 + trn

• (r-1)S =trn - t

• so S=t (rn -1)/(r-1) if r1.

• Simple rule

– If r  1 then S is a constant times largest term

in series

total cost

• Geometric series
– ratio a/bk

– d+1=logbn +1 terms

– first term cnk, last term cad

• If a/bk=1
– all terms are equal T(n) is Q(nk log n)

• If a/bk1
– first term is largest T(n) is Q(nk)

• If a/bk1
– last term is largest T(n) is

Θ 𝑎𝑑 = Θ 𝑎log𝑏 𝑛 = Θ 𝑛log𝑏 𝑎

proving the master recurrence

T(n)=aT(n/b)+cnk

a
n

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

T(1)=c

𝑐 𝑛𝑘

𝑐 𝑛𝑘
𝑎

𝑏𝑘

𝑐 𝑛𝑘
𝑎

𝑏𝑘

2

𝑐 𝑛𝑘
𝑎

𝑏𝑘

𝑑

= 𝑐 𝑎𝑑

