CSE 421: Algorithms

Winter 2014

Lecture 11: Divide \& Conquer
Reading:
Sections 5.1-5.4

divide \& conquer qlgorithm

```
Power(a,n):
    if n=0 then
        return(1)
    else if n=1 then
        return(a)
    else
        x}\leftarrow\operatorname{Power(a,\lfloorn/2\rfloor)
        if }\boldsymbol{n}\mathrm{ is even then
            return(xox)
        else
            return(a`x`x)
```


fast exponentiation

- Power(a,n)
- Input: integer n and number a
- Output: an
- Obvious algorithm
- n -1 multiplications
- Observation:
- if n is even, $n=2 m$, then $a^{n}=a^{m} \cdot a^{m}$

analysis

- Worst-case recurrence
$-T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+2$ for $n \geq 1$
$-T(1)=0$
- Time:
- More precise analysis:
$T(n)=\left\lceil\log _{2} n\right\rceil+\#$ of 1 's in n's binary representation

practical application: RSA

- Instead of a^{n} want $a^{n} \bmod N$
$-a^{i+j} \bmod N=\left(\left(a^{i} \bmod N\right) \cdot\left(a^{j} \bmod N\right)\right) \bmod N$
- same algorithm applies with each Xoy replaced by $((x \bmod N) \cdot(y \bmod N)) \bmod N$
- In RSA cryptosystem (widely used for security)
- need $a^{n} \bmod \mathrm{~N}$ where $\mathrm{a}, \mathrm{n}, \mathrm{N}$ each typically have 1024 bits
- Power: at most 2048 multiplies of 1024 bit numbers relatively easy for modern machines
- Naive algorithm: 2^{1024} multiplies

bisection method

```
Bisection(a,b,\varepsilon):
    if (a-b)<\varepsilon then
        return(a)
    else
        c}\leftarrow(a+b)/
        if f(c)\leq0 then
            return(Bisection(c,b,\varepsilon))
        else
            return(Bisection(a,c,\varepsilon))
```


binary search for roots (bisection method)

- Given:
- continuous function f and two points $a<b$ with $f(a) \leq 0$ and $f(b)>0$
- Find:
- approximation to cs.t. $f(c)=0$ and $a<c<b$
analysis
- At each step we halved the size of the interval
- It started at size b-a
- It ended at size ε
- \# of calls to f is $\log _{2}\left(\frac{b-a}{\epsilon}\right)$

old favorites

- Binary search
- One subproblem of half size plus one comparison
- Recurrence $T(n)=T(\lceil n / 2\rceil)+1$ for $n \geq 2$

$$
T(1)=0
$$

So $T(n)$ is $\left\lceil\log _{2} n\right\rceil+1$

- Mergesort
- Two subproblems of half size plus merge cost of $n-1$ comparisons
- Recurrence $T(n) \leq 2 T([n / 2\rceil)+n-1$ for $n \geq 2$

$$
T(1)=0
$$

Roughly n comparisons at each of $\log _{2} n$ levels of recursion So $T(n)$ is roughly $2 n \log _{2} n$

closest pair in the plane

\square

euclidean closest pair

- Given a set P of n points p_{1}, \ldots, p_{n} with real-valued coordinates
- Find the pair of points $\mathbf{p}_{\boldsymbol{i}}, \mathbf{p}_{\boldsymbol{j}} \in \mathbf{P}$ such that the Euclidean distance $d\left(p_{1}, p_{j}\right)$ is minimized
- $\Theta\left(n^{2}\right)$ possible pairs
- In one dimension?
- What about points in the plane?
divide and conquer?
- Sort the points by their x coordinates
- Split the points into two sets of $n / 2$ points L and R by x coordinate
- Recursively compute
- closest pair of points in $\mathrm{L},\left(\mathrm{p}_{\mathrm{L}}, \mathrm{q}_{\mathrm{L}}\right)$
- closest pair of points in $R,\left(p_{R}, q_{R}\right)$
- Let $\delta=\min \left\{d\left(p_{L}, q_{L}\right), d\left(p_{R}, q_{R}\right)\right\}$ and let (p, q) be the pair of points that has distance δ

No single direction along which one can sort points to guarantee success

clever girl

L

clever girl

L

closest pair recombining

- Sort points by y coordinate ahead of time
- On recombination only compare each point in δ-band of $L \cup R$ to the 11 points in δ-band of $L \cup R$ above it in the y sorted order
- If any of those distances is better than δ replace (\mathbf{p}, \mathbf{q}) by the best of those pairs
- $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ for x and y sorting at start
- Two recursive calls on problems on half size
- $\mathbf{O}(\mathrm{n})$ recombination
- Total:
- More general divide and conquer
- You've broken the problem into a different subproblems
- Each has size at most n / b
- The cost of the break-up and recombining the subproblem solutions is $\boldsymbol{O}\left(\boldsymbol{n}^{k}\right)$
- Recurrence: $\boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{a} \cdot \boldsymbol{T}(\boldsymbol{n} / \boldsymbol{b})+\boldsymbol{c} \cdot \boldsymbol{n}^{\boldsymbol{k}}$
master divide and conquer recurrence
- If $T(n) \leq a \cdot T(n / b)+c \cdot n^{k}$ for $n>b$ then

$$
\text { - if } \boldsymbol{a}>\boldsymbol{b}^{\boldsymbol{k}} \text { then } \boldsymbol{T}(\boldsymbol{n}) \text { is } \Theta\left(n^{\log _{b} a}\right)
$$

$$
\text { - if } \boldsymbol{a}<\boldsymbol{b}^{k} \text { then } \boldsymbol{T}(\boldsymbol{n}) \text { is } \Theta\left(n^{k}\right)
$$

$$
\text { - if } \boldsymbol{a}=\boldsymbol{b}^{\boldsymbol{k}} \text { then } \boldsymbol{T}(\boldsymbol{n}) \text { is } \Theta\left(n^{k} \log n\right)
$$

- Works even if it is $\left\lceil\frac{n}{b}\right\rceil$ instead of $\frac{n}{b}$.
- If $T(n) \leq a \cdot T(n / b)+c \cdot n^{k}$ for $n>b$ then

$$
\begin{aligned}
& \text { - if } \boldsymbol{a}>\boldsymbol{b}^{\boldsymbol{k}} \text { then } \boldsymbol{T}(\boldsymbol{n}) \text { is } \Theta\left(n^{\log _{b} a}\right) \\
& \text { - if } \boldsymbol{a}<\boldsymbol{b}^{\boldsymbol{k}} \text { then } \boldsymbol{T}(\boldsymbol{n}) \text { is } \Theta\left(n^{k}\right) \\
& \text { - if } \boldsymbol{a}=\boldsymbol{b}^{\boldsymbol{k}} \text { then } \boldsymbol{T}(\boldsymbol{n}) \text { is } \Theta\left(n^{k} \log n\right)
\end{aligned}
$$

proving the master recurrence

$$
\text { Problem size } \quad \mathbf{T}(\mathbf{n})=\mathbf{a} \cdot \mathbf{T}(\mathbf{n} / \mathbf{b})+\mathbf{c} \cdot \mathbf{n}^{\mathbf{k}} \quad \# \text { probs }
$$

proving the master recurrence

geometric series

- $S=t+t r+t r^{2}+\ldots+t r^{n-1}$
- r.S $=\quad$ tr + tr $^{2}+\ldots+$ tr $^{n-1}+$ tr n
- (r-1)S $=t r^{n}-t$
- so $\mathrm{S}=\mathrm{t}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$ if $\mathrm{r} \neq \mathbf{1}$.
- Simple rule
- If $r \neq 1$ then S is a constant times largest term in series

total cost

- Geometric series
- ratio a / b^{k}
$-d+1=\log _{b} n+1$ terms
- first term cn^{k}, last term ca ${ }^{\text {d }}$
- If $\mathbf{a} / \mathbf{b}^{\mathbf{k}}=\mathbf{1}$
- all terms are equal $T(n)$ is $\Theta\left(n^{k} \log n\right)$
- If $\mathbf{a} / \mathbf{b}^{\mathrm{k}}<\mathbf{1}$
- first term is largest $T(n)$ is $\Theta\left(n^{k}\right)$
- If $a / b^{k}>1$
- last term is largest $T(n)$ is

$$
\Theta\left(a^{d}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)
$$

proving the master recurrence

