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CSE 421: Algorithms 

Winter 2014 

Lecture 10: Dijkstra’s algorithm / Divide & Conquer 

 

Reading:  Sections 5.1-5.4 

single-source shortest paths 
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a greedy algorithm 

Dijkstra’s Algorithm: 

– Maintain a set S of vertices whose shortest paths are 

known 

initially S={s} 

– Maintaining current best lengths of paths that only go 

through S to each of the vertices in G 

path-lengths to elements of S will be right,  to V-S they 
might not be right 

– Repeatedly add vertex v to S that has the shortest 

tentative distance of any vertex in V-S  

update path lengths based on new paths through v 

Dijkstra’s Algorithm 

Dijkstra(G,w,s) 

 S{s} 

 d[s]0 

 while SV do 

 of all edges e=(u,v) s.t. vS and uS select* one with 
the minimum value of d[u]+w(e) 

 SS {v} 

 d[v]d[u]+w(e) 

 pred[v]u 
  

*For each vS maintain d’[v]=minimum value of d[u]+w(e) 
over all vertices uS s.t. e=(u,v) is in of G 
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Dijkstra’s Algorithm 
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Add to S 

Dijkstra’s Algorithm 
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Update distances 

Dijkstra’s Algorithm 
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Add to S 
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Dijkstra’s algorithm correctness 

Suppose all distances to vertices in S are correct 

and v has smallest current value in V-S 

Distance value of vertex in V-S=length of shortest path from s 

 with only last edge leaving S  

s 

v 

x 
S 

Therefore adding v to S keeps correct distances 

Dijkstra’s algorithm correctness 

s 

v 

x 

S 

Dijkstra’s algorithm 

• Algorithm also produces a tree of shortest 

paths to v following pred links 

– From w follow its ancestors in the tree back to v 

 

• If all you care about is the shortest path 

from v to w simply stop the algorithm when 

w is added to S 

implementing Dijkstra’s algorithm 

Need to  

– keep current distance values for nodes in V-S 

– find minimum current distance value 

– reduce distances when vertex moved to S 
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data structure review 

• Priority Queue: 
– Elements each with an associated key 

– Operations 

Insert 
Find-min 

Return the element with the smallest key 

Delete-min 
Return the element with the smallest key and delete it from the data structure 

Decrease-key 
Decrease the key value of some element 
 

• Implementations 
– Arrays:   O(n) time find/delete-min,  O(1) time insert/    

                    decrease-key 

– Heaps:  O(log n) time insert/decrease-key/delete-min, O(1) time  
        find-min 

 

Dijkstra’s algorithm with priority queues 

• For each vertex u not in tree maintain cost of 

current cheapest path through tree to u 

– Store u in priority queue with key = length of 

this path 

• Operations:   

– n-1 insertions (each vertex added once) 

– n-1 delete-mins (each vertex deleted once) 

pick the vertex of smallest key, remove it from the 
priority queue and add its edge to the graph 

– <m decrease-keys (each edge updates one vertex) 

Dijkstra’s algorithm with priority queues 

Priority queue implementations 

– Array 

insert O(1), delete-min O(n), decrease-key O(1) 

total O(n+n2+m)=O(n2) 

– Heap 

insert, delete-min, decrease-key all O(log n) 

total O(m log n) 

– d-Heap  (d=m/n) 

insert, decrease-key O(logm/n n) 

delete-min O((m/n) logm/n n) 

total O(m logm/n n) 

computing point-to-point shortest paths 
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𝐴∗ algorithm 

• Want to find shortest 𝒔-𝒗 path 

• Since we do not care about all distances from 𝒔, would 

like our set 𝑺 to “grow quickly toward 𝒗” 

• For every node 𝒖, have a “heuristic” value 𝒉(𝒖) that 

gives a lower bound on the length of the shortest path 

from 𝒖 to 𝒗 

• Allows us to rule out certain nodes during the search! 

𝐴∗ algorithm 

𝐴∗ algorithm 

• Want to find shortest 𝒔-𝒗 path 

• For every node 𝒖, have a “heuristic” value 𝒉(𝒖) that 

gives a lower bound on the length of the shortest path 

from 𝒖 to 𝒗 

• If 𝒅[𝒖] is the current estimate on the distance from 𝒔 

to 𝒖, then we process the node with smallest value of 

𝒅[𝒖] + 𝒉(𝒖) 

divide & conquer 

• Divide & Conquer 

– Reduce problem to one or more sub-problems of the 

same type  

– Typically, each sub-problem is at most a constant 

fraction of the size of the original problem 

e.g. Mergesort, Binary Search, Strassen’s Algorithm, 
Quicksort (kind of) 
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fast exponentiation 

• Power(a,n) 

– Input:  integer n and number a 

– Output:  an 

 

• Obvious algorithm 

– n-1 multiplications 

 

• Observation: 

– if n is even, n=2m, then an=amam 

divide & conquer qlgorithm 

Power(a,n): 

 if n=0 then 

  return(1)  

 else if n=1 then 

  return(a)     

 else  

   x  Power(a, ⌊𝑛/2⌋) 

   if n is even then                                              

   return(xx)  

   else                                                                  

   return(axx) 

analysis 

• Worst-case recurrence 

– 𝑻 𝒏 = 𝑻
𝒏

𝟐
+ 𝟐 for 𝒏 ≥ 𝟏 

– 𝑻 𝟏 = 𝟎 

 

• Time: 

 

 

• More precise analysis: 

𝑻 𝒏 = 𝐥𝐨𝐠𝟐𝒏 + # of 1’s in n’s binary representation 

practical application:  RSA 

• Instead of an want an mod N 

– ai+j mod N = ((ai mod N)(aj mod N)) mod N 

– same algorithm applies with each xy replaced by   

((x mod N)(y mod N)) mod N 
 

• In RSA cryptosystem (widely used for security) 

– need an mod N where a, n, N each typically have 1024 
bits 

– Power: at most 2048 multiplies of 1024 bit numbers 

relatively easy for modern machines 

– Naive algorithm:  21024  multiplies 

 



1/29/2014 

12 

binary search for roots (bisection method) 

 

 

 

 

• Given:  

– continuous function f and two points ab with f(a)  0 
and f(b)  0 

 

• Find:  

– approximation to c s.t. f(c)=0 and acb 

bisection method 

Bisection(a,b,e): 

if (a-b)  e  then 

 return(a) 

else 

 c (a+b)/2 

    if  f(c)  0 then 

   return(Bisection(c,b,e)) 

 else 

         return(Bisection(a,c,e)) 

 

analysis 

• At each step we halved the size of the 

interval 

• It started at size b-a 

• It ended at size e 

 

• # of calls to f is log2
𝑏−𝑎

𝜖
 


