
1/29/2014

1

CSE 421: Algorithms

Winter 2014

Lecture 10: Dijkstra’s algorithm / Divide & Conquer

Reading: Sections 5.1-5.4

single-source shortest paths

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

a greedy algorithm

Dijkstra’s Algorithm:

– Maintain a set S of vertices whose shortest paths are

known

initially S={s}

– Maintaining current best lengths of paths that only go

through S to each of the vertices in G

path-lengths to elements of S will be right, to V-S they
might not be right

– Repeatedly add vertex v to S that has the shortest

tentative distance of any vertex in V-S

update path lengths based on new paths through v

Dijkstra’s Algorithm

Dijkstra(G,w,s)

 S{s}

 d[s]0

 while SV do

 of all edges e=(u,v) s.t. vS and uS select* one with
the minimum value of d[u]+w(e)

 SS {v}

 d[v]d[u]+w(e)

 pred[v]u

*For each vS maintain d’[v]=minimum value of d[u]+w(e)
over all vertices uS s.t. e=(u,v) is in of G

1/29/2014

2

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

1/29/2014

3

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

1/29/2014

4

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

1/29/2014

5

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

1/29/2014

6

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

1/29/2014

7

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Update distances

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2 10

8

Add to S

1/29/2014

8

Dijkstra’s algorithm correctness

Suppose all distances to vertices in S are correct

and v has smallest current value in V-S

Distance value of vertex in V-S=length of shortest path from s

 with only last edge leaving S

s

v

x
S

Therefore adding v to S keeps correct distances

Dijkstra’s algorithm correctness

s

v

x

S

Dijkstra’s algorithm

• Algorithm also produces a tree of shortest

paths to v following pred links

– From w follow its ancestors in the tree back to v

• If all you care about is the shortest path

from v to w simply stop the algorithm when

w is added to S

implementing Dijkstra’s algorithm

Need to

– keep current distance values for nodes in V-S

– find minimum current distance value

– reduce distances when vertex moved to S

1/29/2014

9

data structure review

• Priority Queue:
– Elements each with an associated key

– Operations

Insert
Find-min

Return the element with the smallest key

Delete-min
Return the element with the smallest key and delete it from the data structure

Decrease-key
Decrease the key value of some element

• Implementations
– Arrays: O(n) time find/delete-min, O(1) time insert/

 decrease-key

– Heaps: O(log n) time insert/decrease-key/delete-min, O(1) time
 find-min

Dijkstra’s algorithm with priority queues

• For each vertex u not in tree maintain cost of

current cheapest path through tree to u

– Store u in priority queue with key = length of

this path

• Operations:

– n-1 insertions (each vertex added once)

– n-1 delete-mins (each vertex deleted once)

pick the vertex of smallest key, remove it from the
priority queue and add its edge to the graph

– <m decrease-keys (each edge updates one vertex)

Dijkstra’s algorithm with priority queues

Priority queue implementations

– Array

insert O(1), delete-min O(n), decrease-key O(1)

total O(n+n2+m)=O(n2)

– Heap

insert, delete-min, decrease-key all O(log n)

total O(m log n)

– d-Heap (d=m/n)

insert, decrease-key O(logm/n n)

delete-min O((m/n) logm/n n)

total O(m logm/n n)

computing point-to-point shortest paths

1/29/2014

10

𝐴∗ algorithm

• Want to find shortest 𝒔-𝒗 path

• Since we do not care about all distances from 𝒔, would

like our set 𝑺 to “grow quickly toward 𝒗”

• For every node 𝒖, have a “heuristic” value 𝒉(𝒖) that

gives a lower bound on the length of the shortest path

from 𝒖 to 𝒗

• Allows us to rule out certain nodes during the search!

𝐴∗ algorithm

𝐴∗ algorithm

• Want to find shortest 𝒔-𝒗 path

• For every node 𝒖, have a “heuristic” value 𝒉(𝒖) that

gives a lower bound on the length of the shortest path

from 𝒖 to 𝒗

• If 𝒅[𝒖] is the current estimate on the distance from 𝒔

to 𝒖, then we process the node with smallest value of

𝒅[𝒖] + 𝒉(𝒖)

divide & conquer

• Divide & Conquer

– Reduce problem to one or more sub-problems of the

same type

– Typically, each sub-problem is at most a constant

fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

1/29/2014

11

fast exponentiation

• Power(a,n)

– Input: integer n and number a

– Output: an

• Obvious algorithm

– n-1 multiplications

• Observation:

– if n is even, n=2m, then an=amam

divide & conquer qlgorithm

Power(a,n):

 if n=0 then

 return(1)

 else if n=1 then

 return(a)

 else

 x  Power(a, ⌊𝑛/2⌋)

 if n is even then

 return(xx)

 else

 return(axx)

analysis

• Worst-case recurrence

– 𝑻 𝒏 = 𝑻
𝒏

𝟐
+ 𝟐 for 𝒏 ≥ 𝟏

– 𝑻 𝟏 = 𝟎

• Time:

• More precise analysis:

𝑻 𝒏 = 𝐥𝐨𝐠𝟐𝒏 + # of 1’s in n’s binary representation

practical application: RSA

• Instead of an want an mod N

– ai+j mod N = ((ai mod N)(aj mod N)) mod N

– same algorithm applies with each xy replaced by

((x mod N)(y mod N)) mod N

• In RSA cryptosystem (widely used for security)

– need an mod N where a, n, N each typically have 1024
bits

– Power: at most 2048 multiplies of 1024 bit numbers

relatively easy for modern machines

– Naive algorithm: 21024 multiplies

1/29/2014

12

binary search for roots (bisection method)

• Given:

– continuous function f and two points ab with f(a)  0
and f(b)  0

• Find:

– approximation to c s.t. f(c)=0 and acb

bisection method

Bisection(a,b,e):

if (a-b)  e then

 return(a)

else

 c (a+b)/2

 if f(c)  0 then

 return(Bisection(c,b,e))

 else

 return(Bisection(a,c,e))

analysis

• At each step we halved the size of the

interval

• It started at size b-a

• It ended at size e

• # of calls to f is log2
𝑏−𝑎

𝜖

