CSE 421: Algorithms

Winter 2014

Lecture 10: Dijkstra's algorithm / Divide \& Conquer
Reading: Sections 5.1-5.4

a greedy algorithm

Dijkstra's Algorithm:

- Maintain a set \mathbf{S} of vertices whose shortest paths are known
initially $\mathrm{S}=\{\mathrm{s}\}$
- Maintaining current best lengths of paths that only go through S to each of the vertices in G path-lengths to elements of S will be right, to V-S they might not be right
- Repeatedly add vertex v to S that has the shortest tentative distance of any vertex in V-S update path lengths based on new paths through v

Dijkstra's Algorithm

```
Dijkstra(G,w,s)
    S}\leftarrow{\mathbf{s}
    d[s]\leftarrow0
    while S=V do
        of all edges e=(u,v) s.t. v}\not\in\mathbf{S}\mathrm{ and }\mathbf{u}\in\mathbf{S}\mathrm{ select* one with
        the minimum value of d[u]+w(e)
            S}\begin{array}{l}{\mathbf{S}\leftarrow\mathbf{S}\cup{\mathbf{v}}}\\{\mathbf{d}[\mathbf{v}]\leftarrow\mathbf{d}[\mathbf{u}]+\mathbf{w}(e)}\\{\operatorname{pred}[\mathbf{v}]\leftarrow\mathbf{u}}
*For each \(v \notin S\) maintain \(d^{\prime}[v]=\) minimum value of \(d[u]+w(e)\) over all vertices \(u \in S\) s.t. \(e=(u, v)\) is in of \(G\)
```


Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's algorithm correctness

Suppose all distances to vertices in S are correct
and v has smallest current value in V-S
Distance value of vertex in V-S=length of shortest path from s with only last edge leaving S

Therefore adding v to S keeps correct distances

Dijkstra's algorithm

- Algorithm also produces a tree of shortest paths to v following pred links
- From w follow its ancestors in the tree back to \mathbf{v}
- If all you care about is the shortest path from v to w simply stop the algorithm when w is added to S

implementing Dijkstra's algorithm

Need to

- keep current distance values for nodes in V-S
- find minimum current distance value
- reduce distances when vertex moved to S

data structure review

- Priority Queue
- Elements each with an associated key
- Operations

Insert
Find-min
Return the element with the smallest key
Delete-min
Return the element with the smallest key and delete it from the data structure
Decrease-key
Decrease the key value of some element

- Implementations
- Arrays: $O(n)$ time find/delete-min, $O(1)$ time insert/ decrease-key
- Heaps: O(log n) time insert/decrease-key/delete-min, O(1) time find-min

Dijkstra's algorithm with priority queues

```
Priority queue implementations
    - Array
    insert O(1), delete-min O(n), decrease-key O(1)
    total O(n+n}\mp@subsup{n}{}{2}+m)=O(\mp@subsup{n}{}{2}
    - Heap
        insert, delete-min, decrease-key all O(log n)
        total O(m log n)
    - d-Heap (d=m/n)
    insert, decrease-key O( }\mp@subsup{\operatorname{log}}{m/n}{n}n
    delete-min O((m/n) 知m/n n)
    total O(m log}m/n n
```


Dijkstra's algorithm with priority queues

- For each vertex u not in tree maintain cost of current cheapest path through tree to u
- Store u in priority queue with key = length of this path
- Operations:
- n -1 insertions (each vertex added once)
- $\mathrm{n}-1$ delete-mins (each vertex deleted once) pick the vertex of smallest key, remove it from the priority queue and add its edge to the graph
- <m decrease-keys (each edge updates one vertex)

computing point-to-point shortest paths

A^{*} algorithm

- Want to find shortest $s-v$ path
- Since we do not care about all distances from s, would like our set S to "grow quickly toward v "
- For every node \boldsymbol{u}, have a "heuristic" value $\boldsymbol{h}(\boldsymbol{u})$ that gives a lower bound on the length of the shortest path from u to v
- Allows us to rule out certain nodes during the search!

A^{*} algorithm

- Want to find shortest $s-v$ path
- For every node \boldsymbol{u}, have a "heuristic" value $\boldsymbol{h}(\boldsymbol{u})$ that gives a lower bound on the length of the shortest path from u to v
- If $d[u]$ is the current estimate on the distance from s to u, then we process the node with smallest value of $\boldsymbol{d}[\boldsymbol{u}]+\boldsymbol{h}(\boldsymbol{u})$
A^{*} algorithm

divide \& conquer

- Divide \& Conquer
- Reduce problem to one or more sub-problems of the same type
- Typically, each sub-problem is at most a constant fraction of the size of the original problem e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

fast exponentiation

- Power(a,n)
- Input: integer n and number a
- Output: an
- Obvious algorithm
- n -1 multiplications
- Observation:
- if n is even, $n=2 m$, then $a^{n}=a^{m} \cdot a^{m}$

analysis

- Worst-case recurrence
$-T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+2$ for $n \geq 1$
$-T(1)=0$
- Time:
- More precise analysis:
$T(n)=\left\lceil\log _{2} n\right\rceil+\#$ of 1 's in n's binary representation

divide \& conquer qlgorithm

```
Power(a,n):
    if }\boldsymbol{n}=\mathbf{0}\mathrm{ then
        return(1)
    else if n=1 then
        return(a)
    else
        x}\leftarrow\operatorname{Power(a,\lfloorn/2\rfloor)
        if \boldsymbol{n}}\mathrm{ is even then
            return(x\bulletx)
        else
            return(a\bulletx\bulletx)
```

 practical application: RSA
 - Instead of a^{n} want $a^{n} \bmod N$
$-\mathbf{a}^{i+j} \bmod \mathbf{N}=\left(\left(a^{i} \bmod N\right) \bullet\left(a^{j} \bmod \mathbf{N}\right)\right) \bmod \mathbf{N}$
- same algorithm applies with each $x \circ y$ replaced by $((x \bmod N) \cdot(\mathbf{y} \bmod N)) \bmod N$
- In RSA cryptosystem (widely used for security)
- need $a^{n} \bmod N$ where a, n, N each typically have 1024 bits
- Power: at most 2048 multiplies of 1024 bit numbers relatively easy for modern machines
- Naive algorithm: 2^{1024} multiplies
binary search for roots (bisection method)

- Given:
- continuous function f and two points $a<b$ with $f(a) \leq 0$ and $f(b)>0$
- Find:
- approximation to cs.t. $f(c)=0$ and $a<c<b$

bisection method

```
Bisection(a,b,\varepsilon):
    if (a-b)<\varepsilon then
        return(a)
    else
        c}\leftarrow(a+b)/
        if f(c)\leq0 then
        return(Bisection(c,b,\varepsilon))
    else
        return(Bisection(a,c,\varepsilon))
```

analysis

- At each step we halved the size of the interval
- It started at size b-a
- It ended at size ε
- \# of calls to f is $\log _{2}\left(\frac{b-a}{\epsilon}\right)$

