CSE 421.: Algorithms

Winter 2014
Lecture 10: Dijkstra’s algorithm / Divide & Conquer

Reading: Sections 5.1-5.4

OH NO! THE KILER || To save her, we must find a path \:\:u
MUST HAVE ROLLOWED| [short enough to reach her
HER ON VACATION! || before he does!

Stand back, |

e — o

a greedy algorithm

Dijkstra’s Algorithm:

— Maintain a set S of vertices whose shortest paths are
known

initially S={s}
— Maintaining current best lengths of paths that only go
through S to each of the vertices in G

path-lengths to elements of S will be right, to V-S they
might not be right

— Repeatedly add vertex v to S that has the shortest
tentative distance of any vertex in V-S

update path lengths based on new paths through v

single-source shortest paths

Dijkstra’s Algorithm

Dijkstra(G,w,s)
S« {s}
d[s]«O0
while S#V do

of all edges e=(u,v) s.t. v¢S and ueS select* one with
the minimum value of d[u]+w(e)

S<Su {v}
d[v]<—d[u]+w(e)
pred[v]<u

*For each v¢S maintain d’[v]=minimum value of d[u]+w(e)
over all vertices ueS s.t. e=(u,v) is in of G

1/29/2014

Dijkstra’s Algorithm

1/29/2014

Dijkstra’s Algorithm

Addto S &4

Dijkstra’s Algorithm

Update distances

Dijkstra’s Algorithm

1/29/2014

Dijkstra’s Algorithm

Update distances

A

Addto S

Dijkstra’s Algorithm

Update distances

Dijkstra’s Algorithm

Addto S

1/29/2014

1/29/2014

Dijkstra’s Algorithm Dijkstra’s Algorithm

Update distances %}) 4 Addto S
5

Dijkstra’s Algorithm

Update distances %}) 4
5

Dijkstra’s Algorithm

1/29/2014

Dijkstra’s Algorithm

Update distances %D 4
5

Dijkstra’s Algorithm

1/29/2014

1/29/2014

Dijkstra’s algorithm correctness Dijkstra’s algorithm correctness

Suppose all distances to vertices in S are correct
and v has smallest current value in V-S

Distance value of vertex in V-S=length of shortest path from s
with only last edge leaving S

Therefore adding v to S keeps correct distances

Dijkstra’s algorithm implementing Dijkstra’s algorithm

* Algorithm also produces a tree of shortest Need to
paths to v following pred links — keep current distance values for nodes in V-S
— From w follow its ancestors in the tree back to v — find minimum current distance value

— reduce distances when vertex moved to S

* If all you care about is the shortest path
from v to w simply stop the algorithm when
w is added to S

data structure review

* Priority Queue:
— Elements each with an associated key
— Operations
Insert
Find-min
Return the element with the smallest key
Delete-min
Return the element with the smallest key and delete it from the data structure
Decrease-key
Decrease the key value of some element

* Implementations
— Arrays: O(n) time find/delete-min, O(1) time insert/
decrease-key
— Heaps: O(log n) time insert/decrease-key/delete-min, O(1) time
find-min

Dijkstra’s algorithm with priority queues

1/29/2014

Dijkstra’s algorithm with priority queues

Priority queue implementations

— Array
insert O(1), delete-min O(n), decrease-key O(1)
total O(n+n%+m)=0(n?)

— Heap
insert, delete-min, decrease-key all O(log n)
total O(m log n)

— d-Heap (d=m/n)
insert, decrease-key O(log,/, n)
delete-min O((m/n) log,/, n)
total O(m log,,/, n)

* For each vertex u not in tree maintain cost of
current cheapest path through tree to u
— Store u in priority queue with key = length of
this path
* Operations:
— n-1insertions (each vertex added once)
— n-1 delete-mins (each vertex deleted once)

pick the vertex of smallest key, remove it from the
priority queue and add its edge to the graph

— <m decrease-keys (each edge updates one vertex)

computing point-to-point shortest paths

1/29/2014

A* algorithm A* algorithm

* Want to find shortest s-v path

¢ Since we do not care about all distances from s, would
like our set S to “grow quickly toward v”

* For every node u, have a “heuristic” value h(u) that
gives a lower bound on the length of the shortest path
from uto v

* Allows us to rule out certain nodes during the search!

A* algorithm divide & conquer

* Want to find shortest s-v path - Divide & Conquer

* For every node u, have a “heuristic” value h(u) that — Reduce problem to one or more sub-problems of the

gives a lower bound on the length of the shortest path same type

from u to v — Typically, each sub-problem is at most a constant
* If d[u] is the current estimate on the distance from s fraction of the size of the original problem

to u, then we process the node with smallest value of e.g. Mergesort, Binary Search, Strassen’s Algorithm,

dlu] + h(u) Quicksort (kind of)

10

1/29/2014

fast exponentiation divide & conquer qlgorithm
* Power(a,n) Power(a,n):

— Input: integer n and number a if n=0 then

— Output: a" return(1)

* Obvious algorithm else if n=1 then

— n-1 multiplications return(a)
else
» Observation: X < Power(a, |n/2])
— if n is even, n=2m, then a"=a™.a™ if n is even then
return(xex)
else
return(aexex)
analysis practical application: RSA
* Worst-case recurrence * Instead of a" want a” mod N
— giti = i o(al
_ T(n) _ T(H) +2forn>1 atmod N) ((a mod.N) (et mod N)) mod N
2 — same algorithm applies with each xsy replaced by
-T(1)=0 ((x mod N)e(y mod N)) mod N

* In RSA cryptosystem (widely used for security)
— need a" mod N where a, n, N each typically have 1024
bits
— Power: at most 2048 multiplies of 1024 bit numbers
relatively easy for modern machines
— Naive algorithm: 21024 multiplies

* Time:

* More precise analysis:
T(n) = [log,n] + # of 1's in n’s binary representation

11

1/29/2014

binary search for roots (bisection method) bisection method
L~ Bisection(a,b,¢):
_J if (a-b) < & then
return(a)
|
* Given: else
— continuous function f and two points a<b with f(a) <0 ¢ <(at+h)/2
and f(b)> 0 if f(c) <0 then
return(Bisection(c,b,g))
* Find:
else

— approximation to c s.t. f(c)=0 and a<c<b . .
return(Bisection(a,c,¢))

analysis

* At each step we halved the size of the
interval

* |t started at size b-a
* It ended at size ¢

» # of calls to f is log, (b;a)

€

12

