CSE 421: Algorithms
Winter 2014
Lecture 1: Introductions

median on a circle

Input: Points $x_{1}, x_{2}, \ldots, x_{n}$ on the unit circle. Let $\operatorname{sum}(x)=d\left(x, x_{1}\right)+d\left(x, x_{2}\right)+\cdots+d\left(x, x_{n}\right)$ Find index j such that $\operatorname{sum}\left(x_{j}\right)$ is minimal.

course information

Instructor: James R. Lee (me!)
Teaching assistants: Armando J. Diaz Tolentino Yanling He
Book: Algorithm Design

Homework: Due WED at start of class
Exams: Midterm and Final (TBD soon)
All course information at http://www.cs.washington.edu/421
sorting the points

How long to sort the input points?

a facebook post

How can I find the median of points on a circle?
iterative computation?

a problem from Intel

Object recognition using labeled images.

stable matching problem

Goal: Given n men and n women, find a "suitable" matching. Participants rate members of opposite sex.
Each man lists women in order of preference: best to worst. Each woman lists men in order of preference: best to worst.

Men's Preference Profile
matching residents to hospitals

Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process.

stable matching problem

- Perfect matching: everyone is matched monogamously.
- Each man gets exactly one woman.

Each woman sets exactly one man.

- Stability: no incentive for some pair of participants to undermine assignment by joint action.
- In matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to current partners. - Unstable pair m-w could each improve by eloping.
- Stable matching: perfect matching with no unstable pairs.
- Stable matching problem: Given the preference lists of n men and n women, find a stable matching if one exists.

Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process

Unstable pair: applicant x and hospital y are unstable if: $-x$ prefers y to their assigned hospital.
-y prefers x to one of its admitted residents.
Stable assignment. Assignment with no unstable pairs

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital side deal from being made.
stable matching problem

Is assignment X-C, Y-B, Z-A stable?

Is assignment $X-A, Y-B, Z-C$ stable?

stable roommates

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.

- 2n people; each person ranks others from 1 to $2 n-1$.

proof of correctness: termination

- Observation 1. Men propose to women in decreasing order of preference.
- Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."
- Claim. Algorithm terminates after at most n^{2} iterations of while loop.
Proof. Each time through the while loop a man propose to a new woman. There are only n^{2} possible proposals.

proof of correctness: perfection

- Claim: All men and women get matched.
- Proof. (by contradiction)
- Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
- But, Zoran proposes to everyone, since he ends up unmatched. -

propose-and-reject algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962]
Intuitive method that is guaranteed to find a stable matching.

```
Initialize each person to be free
while (some man is free and hasn't proposed to every woman)
    ist to whom m has not yet proposed
    w = 1t+ woman o
            assign m and w to be engaged
        else if (w prefers m to her fiandém)
        assign m}\mathrm{ and w to be engaged, and m' to be free
        else w rejects m
1
```

http://mathsite.math.berkeley.edu/smp/smp.htm http://www.cs.columbia.edu/~evs/intro/stable/Stable.htm http://demonstrations.wolfram.com/StableMarriages/

proof of correctness: stability

Claim: No unstable pairs.
Proof. (by contradiction)
Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching \mathbf{S}^{*}

- Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.
- How to implement GS algorithm efficiently?
- If there are multiple stable matchings, which one does GS find?

