CSE 421 Algorithms

Sequence Alignment



Sequence Alignment

What
Why
A Dynamic Programming Algorithm



Sequence Similarity: What

GGACCA
TACTAAG

TCCAAG



Sequence Similarity: What

GGACCA

TACTAAG

b
TCC-AAG



Sequence Similarity: Why

Bio

Most widely used comp. tools in biology

New sequence always compared to data bases
Similar sequences often have similar
origin and/or function

Recognizable similarity after 108 —10° yr
DNA sequencing & assembly

Other
spell check/correct, diff, svn/qit/..., plagiarism, ...




Try it!

BLAST Demo pick any protein, e.g.
http://www.ncbi.nlm.nih.gov/blast/ hemoglobin, insulin,

exportin,... BLAST to

Taxonomy Report find distant relatives.

. BEukaryota ...... i 62 hits 14 orgs [cellular organisms]

Alternate demo:

go to http://www.uniprot.org/uniprot/O14980 “Exportin-1”’

find “BLAST” button about %2 way down page, under “Sequences”, just
above big grey box with the amino sequence of this protein

click “go” button

after a minute or 2 you should see the 15t of 10 pages of “hits” — matches to
similar proteins in other species

you might find it interesting to look at the species descriptions and the
“identity” column (generally above 50%, even in species as distant from us
as fungus -- extremely unlikely by chance on a 1071 letter sequence over a
20 letter alphabet)

Also click any of the colored “alignment” bars to see the actual alignment of
the human XPO1 protein to its relative in the other species — in 3-row
groups (query 18, the match 3, with identical letters highlighted in between)

"~mphocystis disease virus ......... 1 hits 1 orgs [Viruses; dsDNA viruses, no RNA ..]



Terminology

String: ordered list of letters TATAAG

Prefix: consecutive letters from front
empty, T, TA, TAT, ...

Suffix: ... from end
empty, G, AG, AAG, ...

Substring: ... from ends or middle
empty, TAT, AA, ...

Subsequence: ordered, nonconsecutive
TT, AAA, TAG, ...



Sequence Alignment

agbgdp ac——bcdb
cadbd —cadb d—

Defn: An alignment of strings S, T is a
pair of strings S’, T (with dashes) s.t.

(1) |S’| = |T|, and (|S] = “length of S”)
(2) removing all dashes leaves S, T



Mismatch = -1
. . Match = 2
Alignment Scoring
a c b cdb a ¢ - - b ¢ d Db
c adb d - ¢ a d b - d
-1 2 -1 -1 2 -1 2 -1 <«
Value = 3*%2 + 5%(-1) = +1

The score of aligning (characters or
dashes) x &y is o(x,y).

Value of an alignment ElSWG(S'[i],T'[i])

i=1
An optimal alignment: one of max value
(Assume o )



Alignment by
Dynamic Programming®?

Common Subproblems?

Plausible: probably re-considering alignments of
various small substrings unless we're careful.

Optimal Substructure?

Plausible: left and right "halves" of an optimal
alignment probably should be optimally aligned
(though they obviously interact a bit at the interface).

(Both made rigorous below.)

10



Optimal Substructure
(In More Detall)

Optimal alignment ends in 1 of 3 ways:

astc
ast c

ast c

nars of S & T aligned with each other
nar of S aligned withdashin T

nar of T aligned with dash in S

( never align dash with dash; o(—, —) < 0)

In each case, the resf of S & T should be
optimally aligned to each other



Optimal Alignment in O(n?)
via “Dynamic Programming”

Input: S, T, |S|=n, [T| =m
Output: value of optimal alignment

Easier to solve a "harder” problem:

V(1,)) = value of optimal alignment of
S[1], ..., S[i] with T[1], ..., T[]
forallO0<si=n,0<j=m.



Base Cases
V(i,0): first i chars of S all match dashes
V(i,0)= ) o(S[k].-)

V(0,)): first j chars of T all match dashes
, j
V(©0,/)=) o(=TIk])



General Case

Opt align of S[1], ..., S[i] vs T[1], ..., TIil:
o Sl [ S e -
1| e B P 4T}

V(i-1j-1)+o(S[i],T[j])

V(i) = max 1 V(i-l1,j) +o(S[i], - ),

W(iy-1) +o(-, T[j])

forall 1=si<n, 1=j=m.

Y




Calculating One Entry

V(i,j) = max -

V(i-1,j-1) + o (S[i],T[j])
V(i-1j) +o(S[i], - )

V(ij-1) +o(-, T[jD.

h'd

V(i-1,)-1) V(i-1,))

V(i,j-1) V(L))

15



Mismatch = -1

Match
Example
j 3 5
i
-3 -5

Score(c,-) = -1

OO | W IN | =~ O

O— | T |Q (O |T | O |Q

2

16



Mismatch = -1
Match = 2

17

Example

j of 1| 2| 3| 4| 5
i C a T
0 0 -1 -2 3| -4 -5
1 a‘ -1
2 C -2 |
3 b -3 ; Score(-,a)=-1
4 C -4
5 d -5
6 b -6

5



Mismatch = -1

Match = 2
Example

j of 1/ 2| 3| 4| 5
i C a T
0 o -1| 2| -3| -4| -5
1 a -1
2 C —2[\
3 b -3
4 cf -4 é Score(-,c) = -1
S d -9 -1
6 b -6

5

18



Mismatch = -1

= 2

Match

Example

ca
—a

19

ca
a_




Mismatch = -1

= 2

Match

Example

Time =
O(mn)




Mismatch = -1

= 2

Match

Example

21



Finding Alignments: Trace Back

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

J 0

OO wW|IN |- |O

O—| T || |T [0 [
I I
o | O
I I
W N
I I
Ww DN
o
X

i{iD

22



Complexity Notes

Time = O(mn), (value and alignment)
Space = O(mn)

Easy to get value in Time = O(mn) and
Space = O(min(m,n))

Possible to get value and alignment in
Time = O(mn) and Space =O(min(m,n))
(KT section 6.7)



Significance of Alignments

Is “42" a good score?
Compared to what?

Usual approach: compared to a specific
“null model”, such as “random sequences”

Interesting stats problem; much is known



Variations

Local Alignment

Preceding gives global alignment, i.e. full
length of both strings;

Might well miss strong similarity of part of
strings amidst dissimilar flanks

Gap Penalties
10 adjacent spaces cost 10 x one space?

Many others
Similarly fast DP algs often possible



Summary: Alignment

Functionally similar proteins/DNA often have recognizably
similar sequences even after eons of divergent evolution

Ability to find/compare/experiment with “same” sequence
In other organisms is a huge win

Surprisingly simple scoring works well in practice: score
positions separately & add, usually w/ fancier gap model
like affine

Simple dynamic programming algorithms can find optimal
alignments under these assumptions in poly time
(product of sequence lengths)

This, and heuristic approximations to it like BLAST, are
workhorse tools in molecular biology, and elsewhere.



Summary: Dynamic Programming

Keys to D.P. are to

a) identify the subproblems (usually repeated/overlapping)

b) solve them in a careful order so all small ones solved
before they are needed by the bigger ones, and

c) build table with solutions to the smaller ones so bigger
ones just need to do table lookups (no recursion, despite

recursive formulation implicit in (a))

d) Implicitly, optimal solution to whole problem devolves to
optimal solutions to subproblems

A really important algorithm design paradigm



