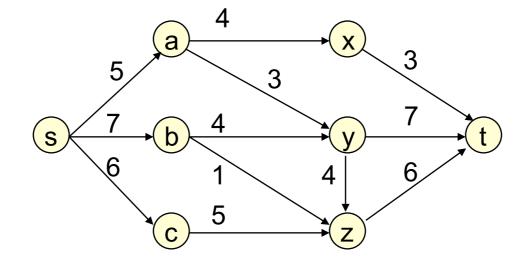
CSE 421 Introduction to Algorithms

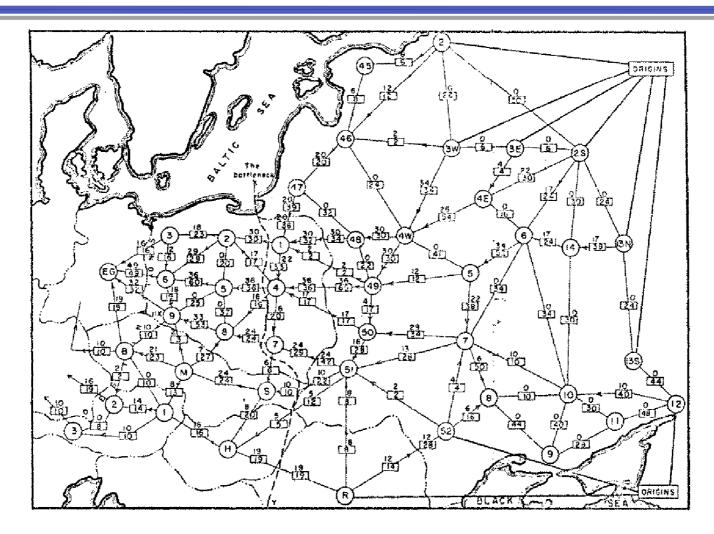
The Network Flow Problem

The Network Flow Problem



How much stuff can flow from s to t?

Soviet Rail Network, 1955



Reference: *On the history of the transportation and maximum flow problems*. Alexander Schrijver in Math Programming, 91: 3, 2002.

Net Flow: Formal Definition

Given:

A digraph G = (V, E)

Two vertices s,t in V (s = source, t = sink)

A capacity $c(u,v) \ge 0$ for each $(u,v) \in E$ (and c(u,v) = 0 for all nonedges (u,v))

Find:

A flow function f: $V \times V \rightarrow R$ s.t., for all u,v:

 $-f(u,v) \le C(u,v)$ [Capacity Constraint]-f(u,v) = -f(v,u)[Skew Symmetry]- if $u \ne s, t, f(u, V) = 0$ [Flow Conservation]

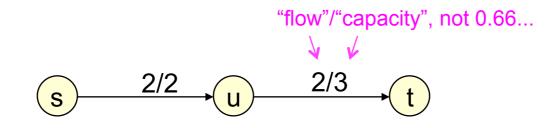
Maximizing total flow |f| = f(s, V)

 $f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$

Notation:

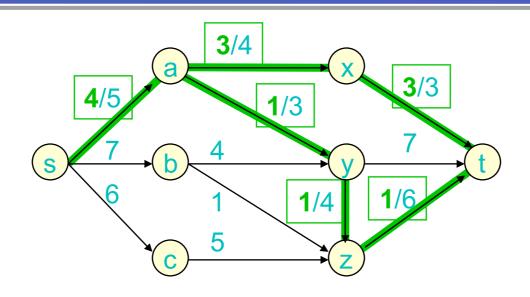
(technically, not quite the same definition as in the book...)

Example: A Flow Function



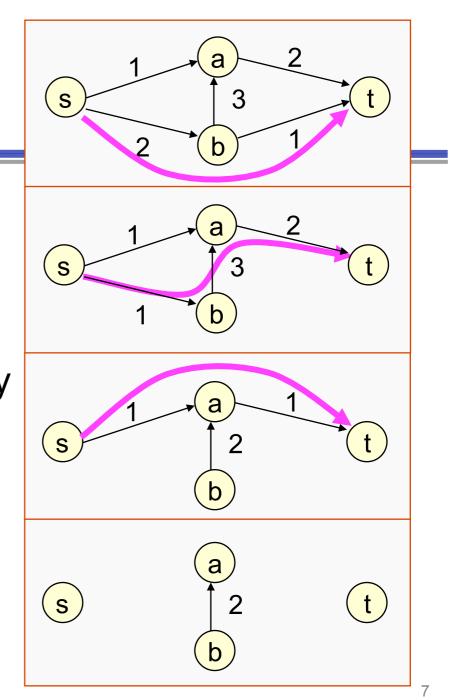
$$\begin{split} f(s,u) &= f(u,t) = 2 \\ f(u,s) &= f(t,u) = -2 \quad (Why?) \\ f(s,t) &= -f(t,s) = 0 \quad (In \text{ every flow function for this G. Why?}) \\ f(u,V) &= \sum_{V \in V} f(u,v) = f(u,s) + f(u,t) = -2 + 2 = 0 \end{split}$$

Example: A Flow Function



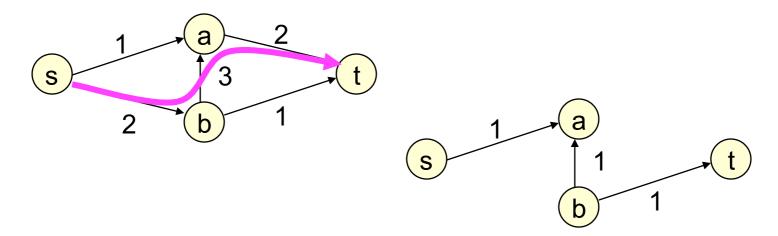
Not shown: f(u,v) if ≤ 0 Note: max flow ≥ 4 since *f* is a flow, |f| = 4 Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G Pick such a path, p Find c_{p} , the min capacity of any edge in p Subtract c_p from all capacities on p Delete edges of capacity 0



Max Flow via a Greedy Alg?

This does NOT always find a max flow: If you pick $s \rightarrow b \rightarrow a \rightarrow t$ first,



Flow stuck at 2, but 3 possible (above).

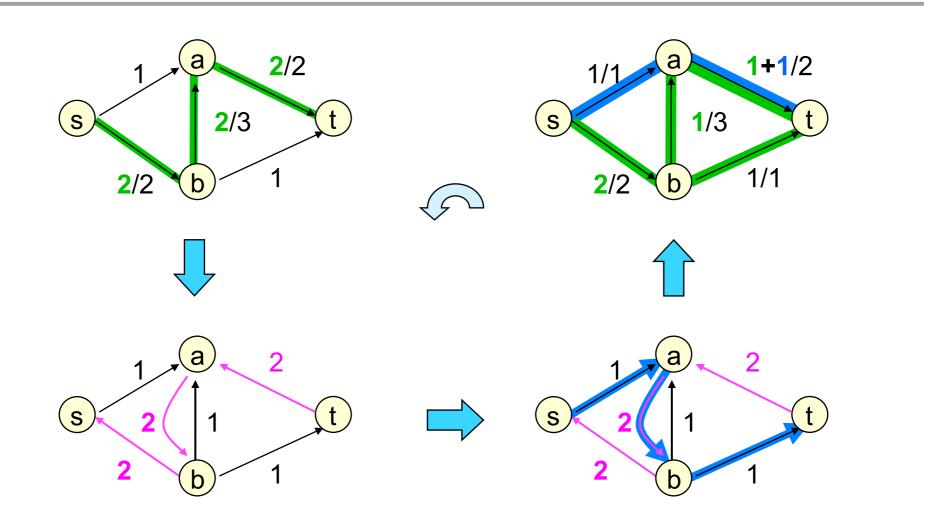
A Brief History of Flow

Year Discoverer(s) Bound # $O(n^2 mC)$ 1951 Dantzig 1 2 1955 Ford & Fulkerson O(nmC) $O(nm^2)$ 3 1970 Dinitz; Edmonds & Karp $O(n^2m)$ 4 1970 Dinitz $O(m^2 \log C)$ 5 1972 Edmonds & Karp; Dinitz 6 1973 Dinitz;Gabow O(nm log C) $O(n^3)$ 7 1974 Karzanov $O(n^2 \operatorname{sqrt}(m))$ 8 1977 Cherkassky $O(nm \log^2 n)$ 1980 Galil & Naamad 9 O(nm log n) 10 1983 Sleator & Tarjan $O(nm \log (n^2/m))$ $O(nm + n^2 \log C)$ 11 1986 Goldberg & Tarjan 12 1987 Ahuja & Orlin O(nm log(n sqrt(log C)/(m+2)) E(nm + n² log² n) 13 1987 Ahuja et al. 14 1989 Cheriyan & Hagerup $O(n^3/\log n)$ 15 1990 Cheriyan et al. $O(nm + n^{8/3} \log n)$ 16 1990 Alon $O(nm + n^{2+\epsilon})$ 17 1992 King et al. $O(nm(log_{m/n} n + log^{2+\epsilon} n))$ 18 1993 Phillips & Westbrook $O(nm(log_{m/(n \log n)} n))$ $O(m^{3/2} log(n^2/m) log C)$; $O(n^{2/3} m log(n^2/m) log C)$ 19 1994 King et al. 20 1997 Goldberg & Rao . . .

n = # of verticesm= # of edges C = Max capacity

Source: Goldberg & Rao, **FOCS '97**

Greed Revisited



Residual Capacity

The *residual capacity* (w.r.t. f) of (u,v) is $c_f(u,v) = c(u,v) - f(u,v)$ 3/4 E.g.: 3/3 4/5 1/3 $c_f(s,b) = 7;$ S $c_f(a,x) = 1;$ 1/6 1/4 5 $c_f(x,a) = 3;$ $C_f(x,t) = 0$ (a saturated edge)

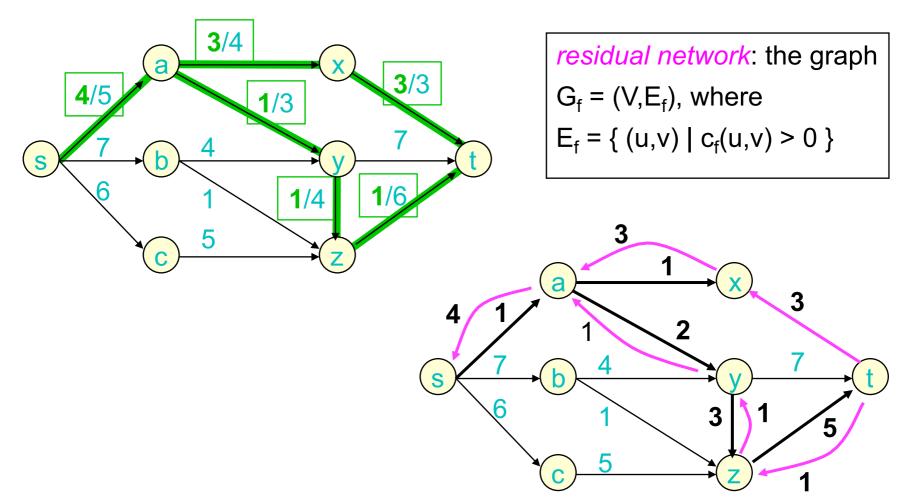
Residual Networks & Augmenting Paths

The *residual network* (w.r.t. f) is the graph $G_f = (V, E_f)$, where

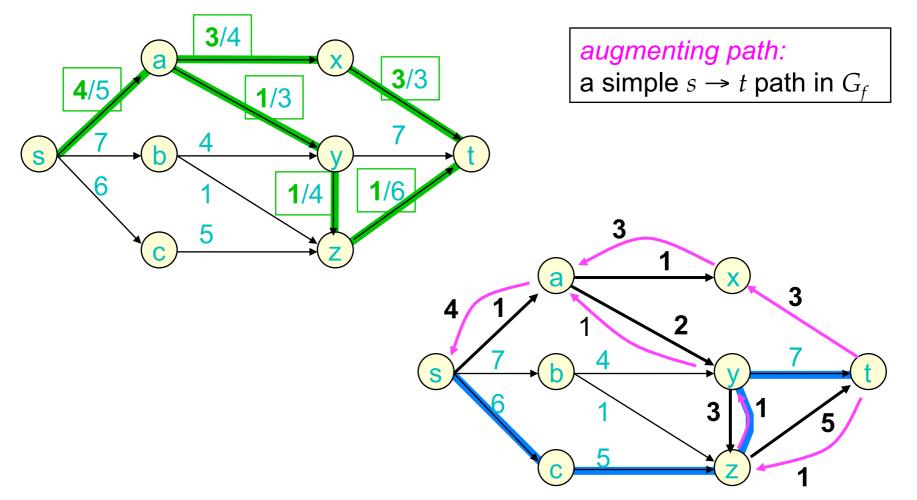
$$E_f = \{ (u,v) \mid c_f(u,v) > 0 \}$$

An *augmenting path* (w.r.t. f) is a simple $s \rightarrow t$ path in G_f

A Residual Network



An Augmenting Path

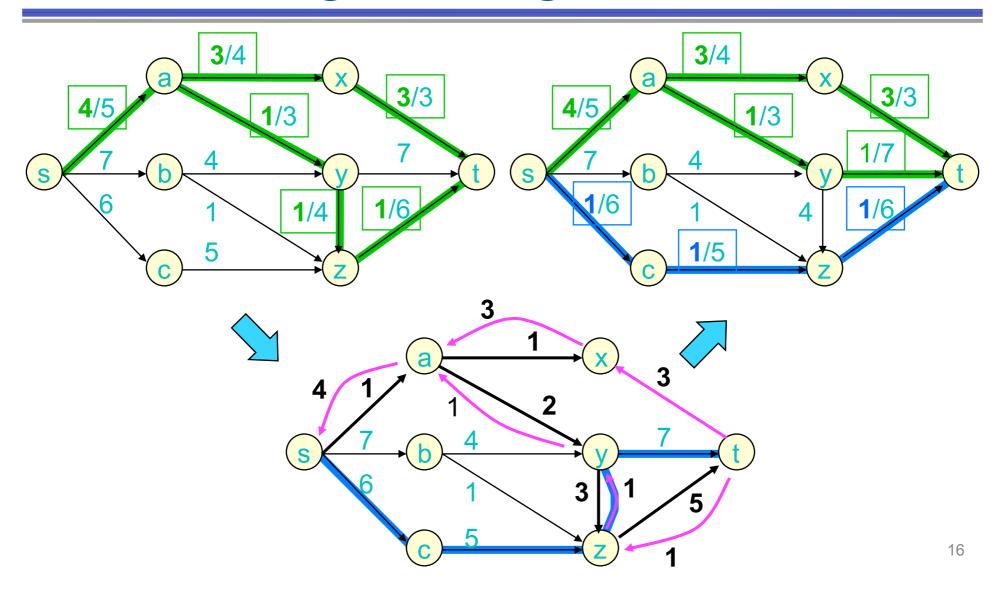


Lemma 1

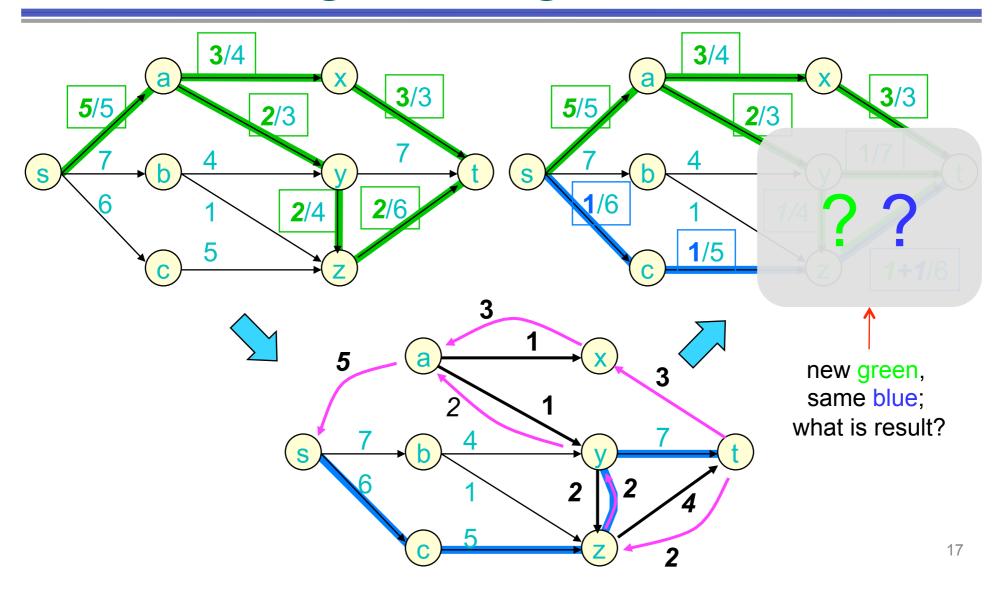
If f admits an augmenting path p, then f is not maximal.

Proof: "obvious" -- augment along p by c_p , the min residual capacity of p's edges.

Augmenting A Flow



Augmenting A Flow



Lemma 1': Augmented Flows are Flows

If *f* is a flow & *p* an augmenting path of capacity c_p , then *f* ' is also a valid flow, where

$$f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$$

Proof:

- a) Flow conservation easy
- b) Skew symmetry easy
- c) Capacity constraints pretty easy; next slides

Lma 1': Augmented Flows are Flows

< f(v, u)

 $\leq c(v,u)$

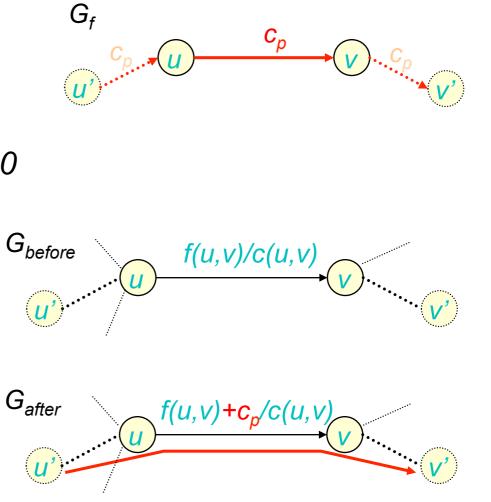
 $f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$

f a flow & p an aug path of cap c_p , then f' also a valid flow. Proof (Capacity constraints): (u,v), (v,u) not on path: no change (u,v) on path: **Residual Capacity:** $0 < c_p \le c_f(u, v) =$ $f'(u,v) = f(u,v) + c_p$ c(u,v) - f(u,v) $\leq f(u,v) + c_f(u,v)$ Cap Constraints: = f(u,v) + c(u,v) - f(u,v) $-c(v,u) \le f(u,v) \le c(u,v)$ = c(u,v) $f'(v,u) = f(v,u) - c_p$

ED

Let (u, v) be any edge in augmenting path. Note $c_f(u, v) = c(u, v) - f(u, v) \ge c_p > 0$

Case 1: $f(u,v) \ge 0$:

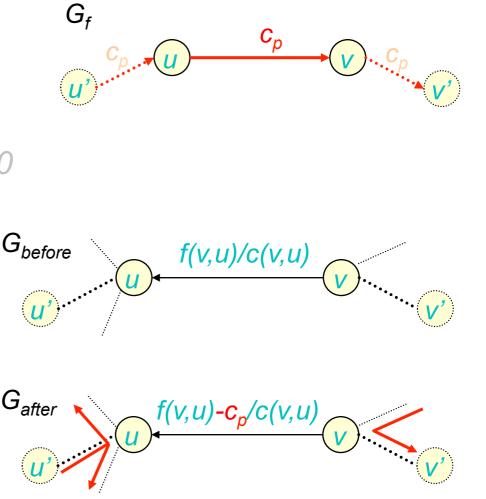


Add forward flow

Let (u, v) be any edge in augmenting path. Note $c_f(u, v) = c(u, v) - f(u, v) \ge c_p > 0$

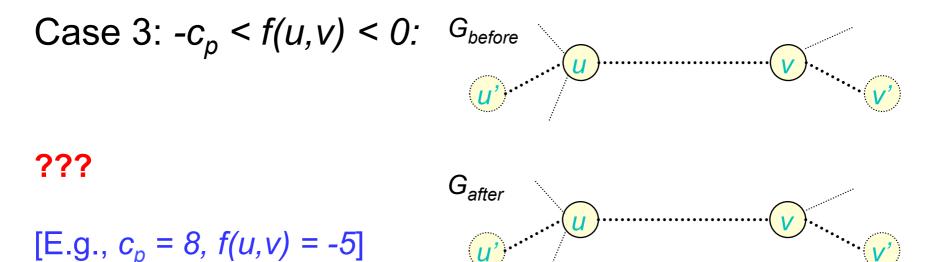
Case 2: $f(u,v) \le -c_p$: $f(v,u) = -f(u,v) \ge c_p$

Cancel/redirect reverse flow



 G_{f}

Let (u, v) be any edge in augmenting path. Note $c_f(u, v) = c(u, v) - f(u, v) \ge c_p > 0$



 G_{f}

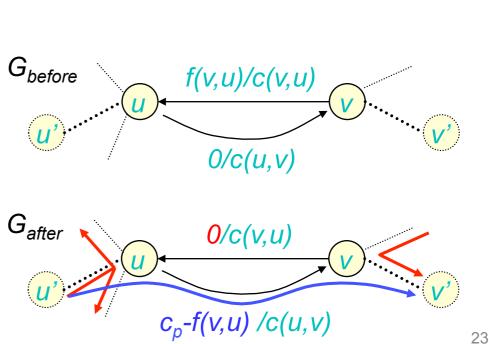
Let (u, v) be any edge in augmenting path. Note $c_f(u, v) = c(u, v) - f(u, v) \ge c_p > 0$

Case 3:
$$-c_{p} < f(u,v) < 0$$

 $c_{p} > f(v,u) > 0$:

Both:

cancel/redirect reverse flow and add forward flow



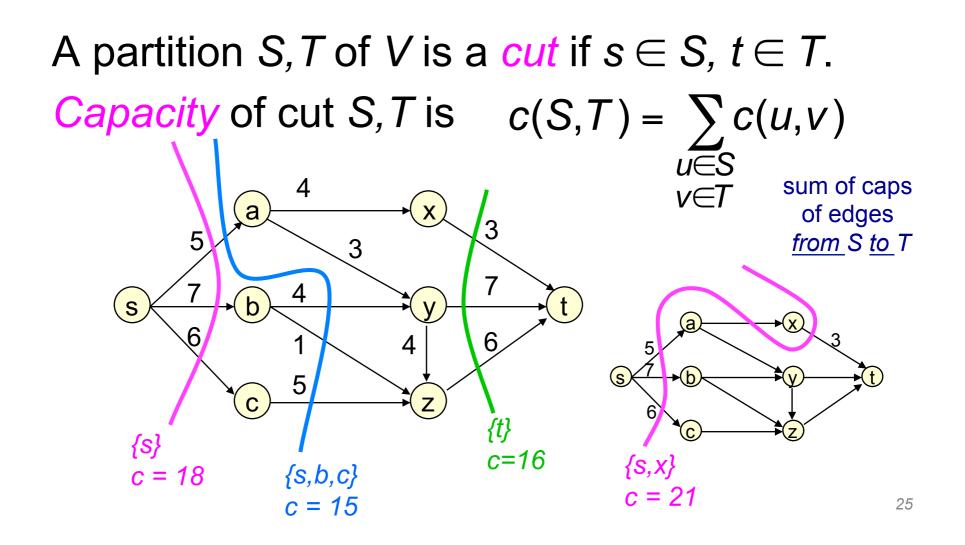
Ford-Fulkerson Method

While G_f has an augmenting path, augment

Questions:

- » Does it halt?
- » Does it find a maximum flow?
- » How fast?

Cuts



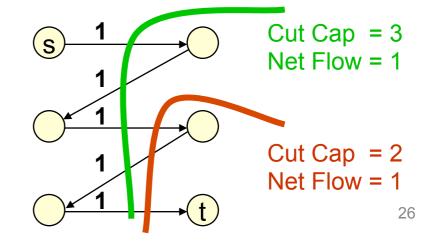
Lemma 2

For any flow *f* and any cut *S*,*T*,

the net flow across the cut equals the total flow, i.e., |f| = f(S,T), and

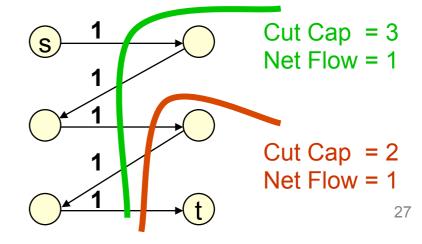
the net flow across the cut cannot exceed the capacity of the cut, i.e. $f(S,T) \leq c(S,T)$

Corollary: Max flow ≤ Min cut



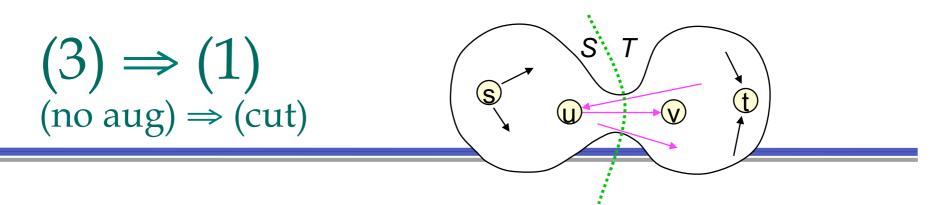
Lemma 2

- For any flow f and any cut S, T, net flow across cut = total flow \leq cut capacity Proof:
 - Track a flow unit. Starts at *s*, ends at *t*. crosses cut an odd # of times; net = 1.
 - Last crossing uses a forward edge totaled in C(S,T)



Max Flow / Min Cut Theorem

- For any flow *f*, the following are equivalent
 (1) |*f*| = *c*(*S*,*T*) for some cut *S*,*T* (a min cut)
 (2) *f* is a maximum flow
 (3) *f* admits no augmenting path
 Proof:
 - (1) \Rightarrow (2): corollary to lemma 2 (2) \Rightarrow (3): contrapositive of lemma 1



S = { $u \mid \exists$ an augmenting path wrt f from s to u } T = V - S; $s \in S, t \in T$

For any (u, v) in $S \times T$, \exists an augmenting path from *s* to *u*, but not to *v*.

 \therefore (*u*,*v*) has 0 residual capacity:

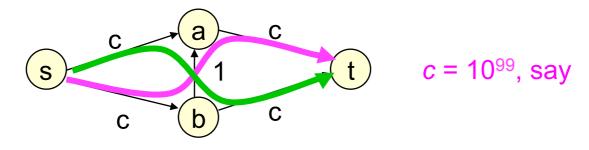
 $(u,v) \in E \Rightarrow \text{saturated} \qquad f(u,v) = c(u,v)$ $(v,u) \in E \Rightarrow \text{no flow} \qquad f(u,v) = 0 = -f(v,u)$ This is true for every edge crossing the cut, i.e. $|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) =$

 $\sum_{u \in S, v \in T, (u,v) \in E} f(u,v) = \sum_{u \in S, v \in T, (u,v) \in E} c(u,v) = c(S,T)$ ²⁹

Corollaries & Facts

If Ford-Fulkerson terminates, then it's found a max flow.

- It will terminate if *c(e)* integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:



How to Make it Faster

Several ways. Three important ones: Edmonds-Karp '70; Dinitz '70 1^{st} "strongly" poly time alg. (next) $T = O(nm^2)$ "Scaling" [Edmonds-Karp, '72; Dinitz '72] do *largest* edges first; see text, and below. if C = max capacity, $T = O(m^2 log C)$ Preflow-Push [Goldberg, Tarjan '86] see text $T = O(n^3)$

Edmonds-Karp-Dinitz '70 Algorithm

Use a shortest augmenting path (via Breadth First Search in residual graph)

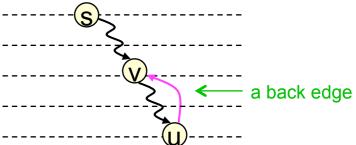
Time: *O(n m²)*

BFS/Shortest Path Lemmas

Distance from s is never reduced by:

- Deleting an edge proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u

proof: BFS is unchanged, since v visited before (u,v) examined

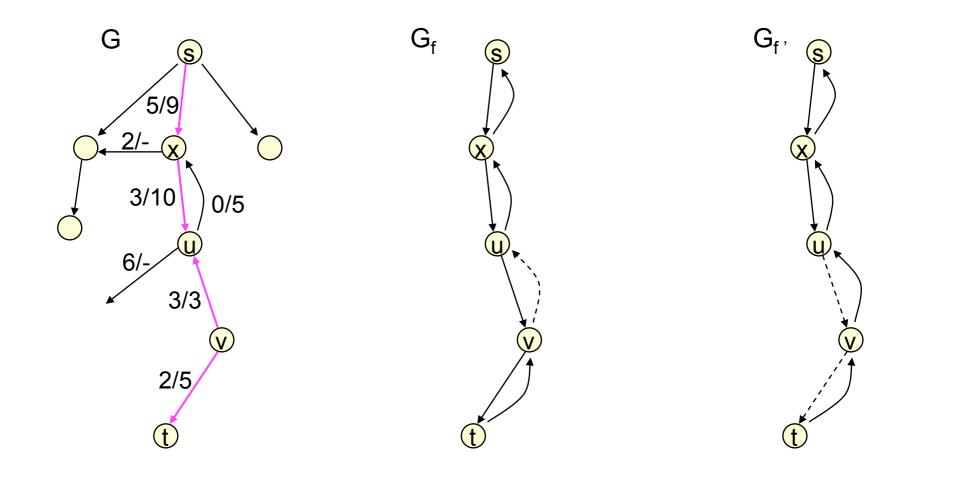


Lemma 3

Let *f* be a flow, G_f the residual graph, and *p* a shortest augmenting path. Then no vertex is closer to *s* in the new residual graph G_{f+p} after augmentation along *p*.

Proof: Augmentation only deletes edges, adds back edges

Augmentation vs BFS



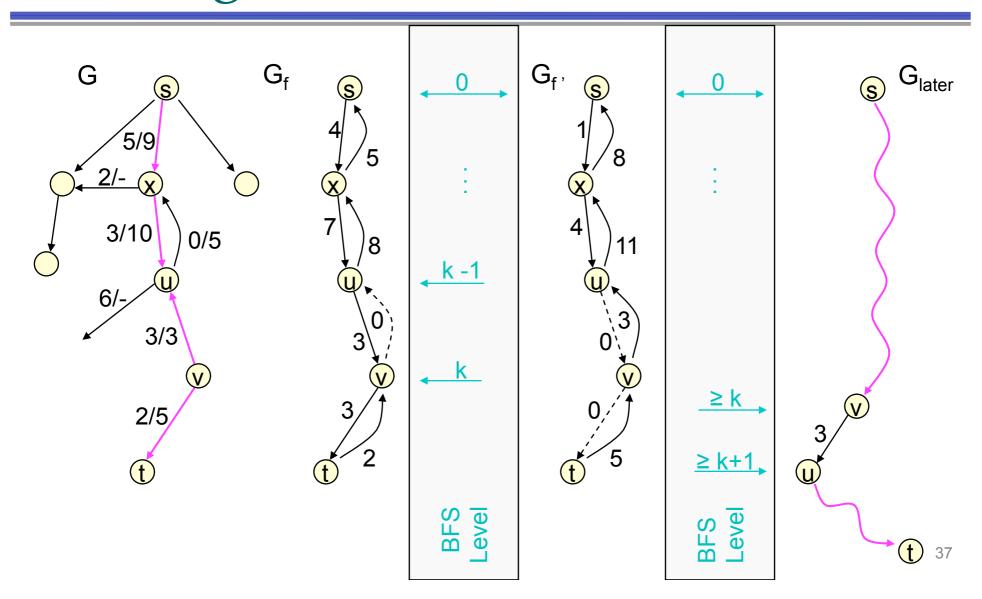
Theorem 2

The Edmonds-Karp-Dinitiz Algorithm performs O(mn) flow augmentations

Proof:

 $\{u,v\}$ is critical on augmenting path p if it's closest to s having min residual capacity. Won't be critical again until farther from s. So each edge critical at most n times.

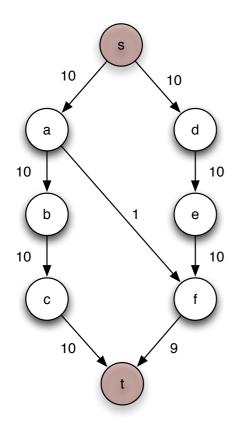
Augmentation vs BFS Level



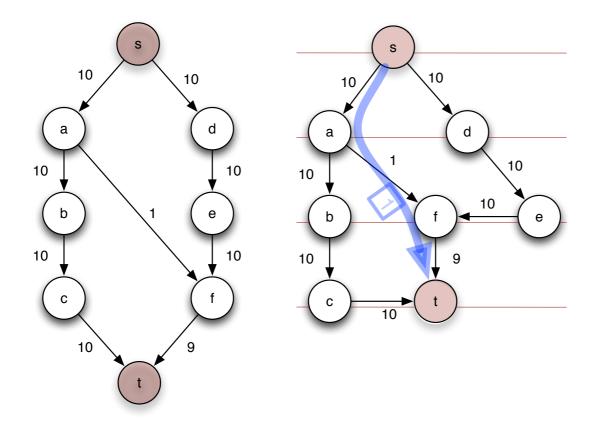
Corollary

Edmonds-Karp-Dinitz runs in O(nm²)

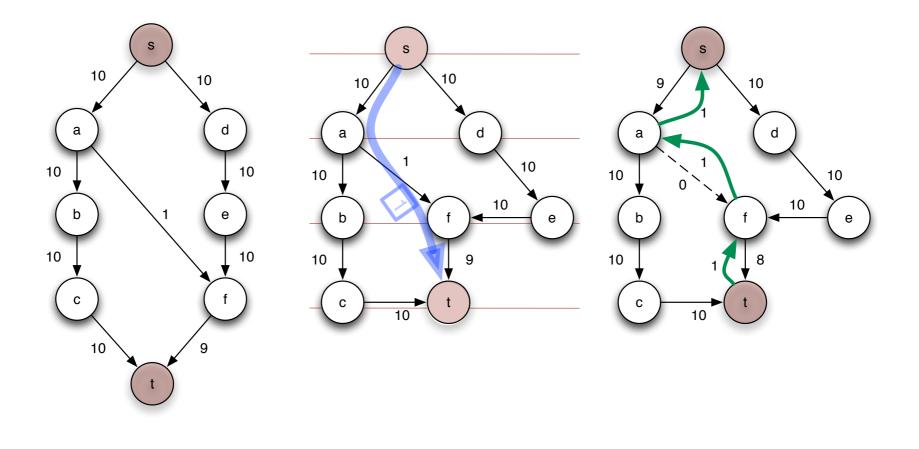
See "Edmonds-Karp-Dinitz Example" on course web page



G₀: the flow problem



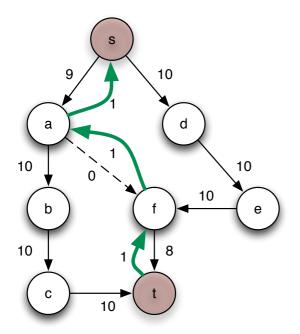
G₀: BFS layering + Aug Path



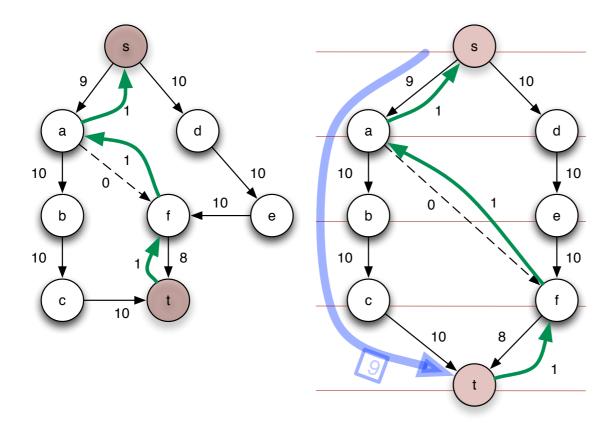
 G_0 : the flow problem

G₀: BFS layering + Aug Path

G_I: Ist Residual Graph

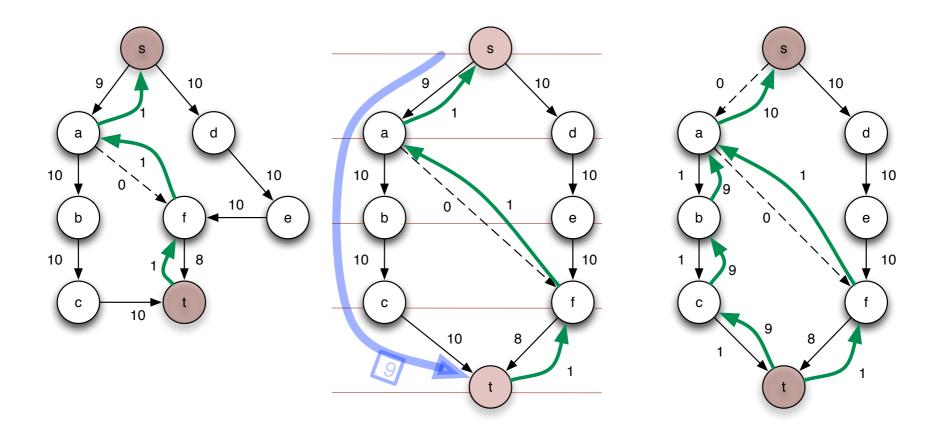


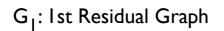
G₁: Ist Residual Graph



G₁: Ist Residual Graph

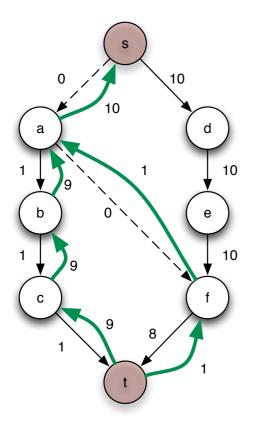
G₁: BFS layering + Aug Path

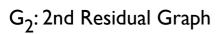


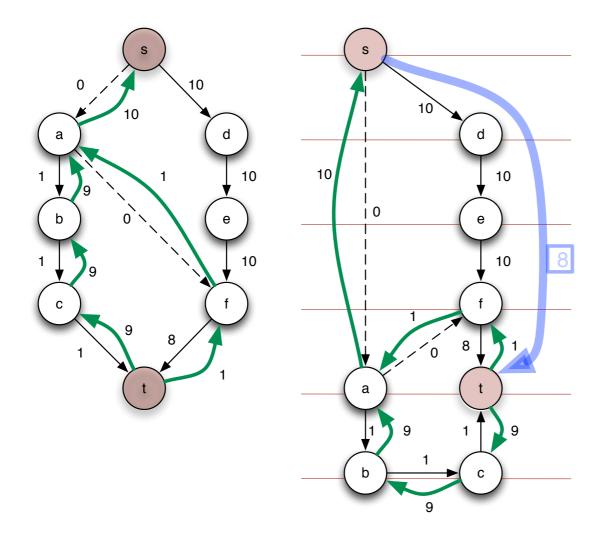


G₁: BFS layering + Aug Path

G₂: 2nd Residual Graph

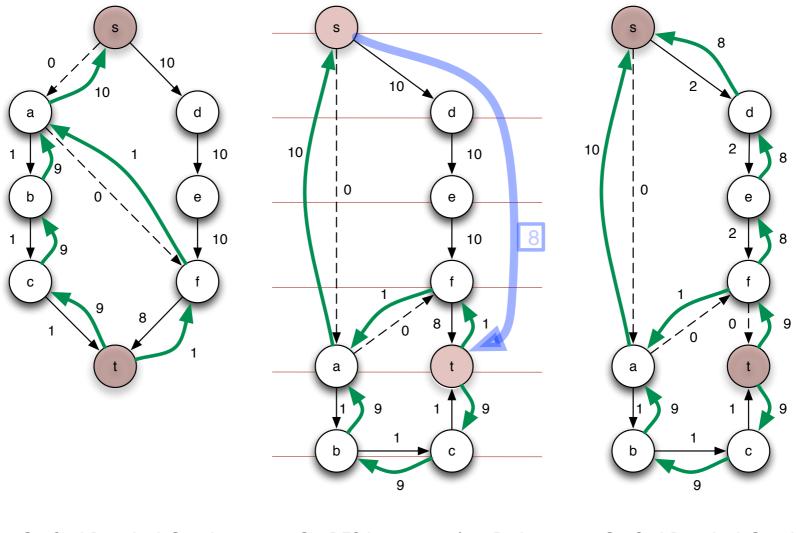






G₂: 2nd Residual Graph

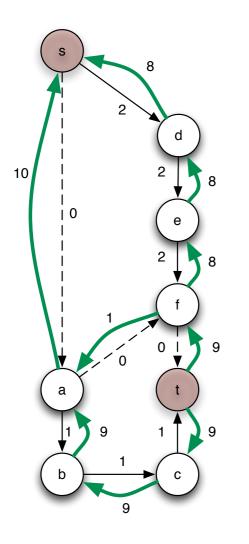
G₂: BFS layering + Aug Path



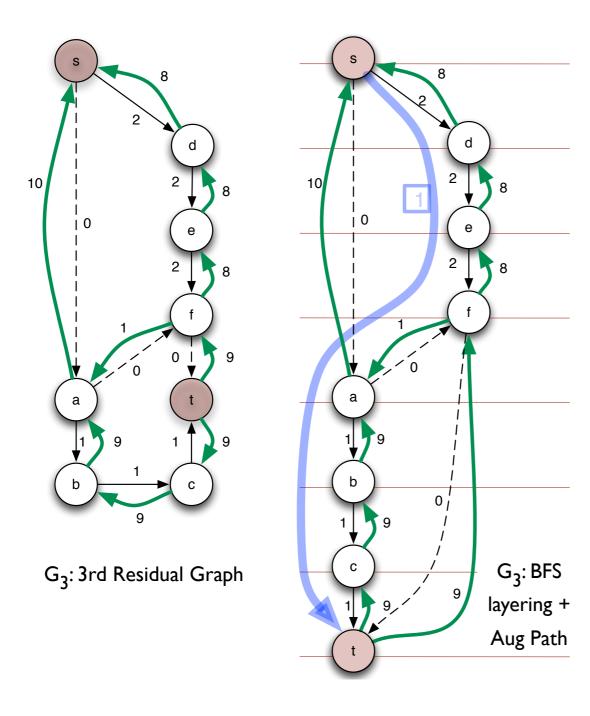
G₂: 2nd Residual Graph

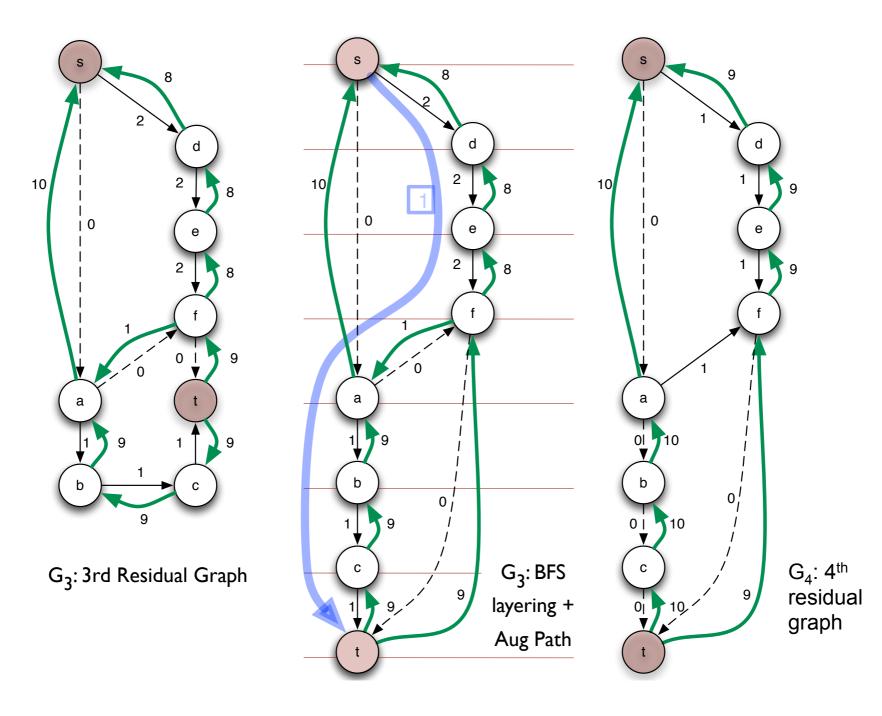
G₂: BFS layering + Aug Path

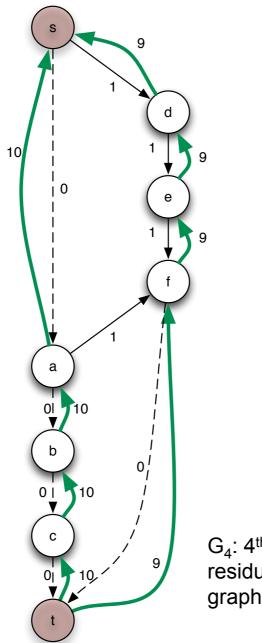
G₃: 3rd Residual Graph



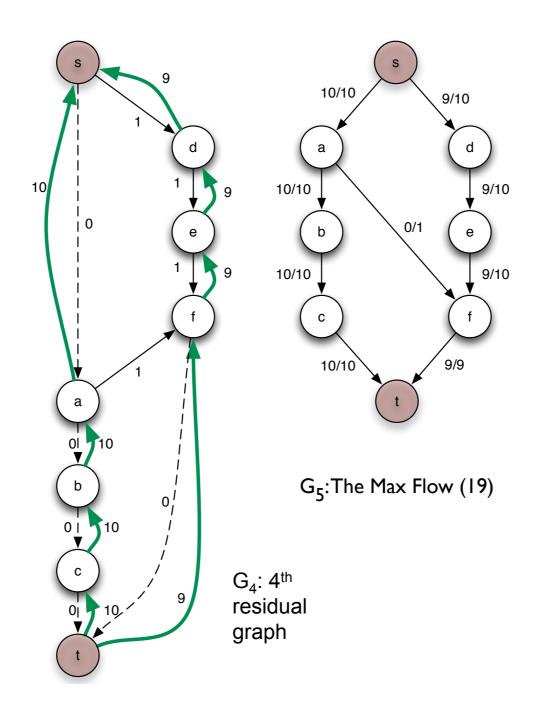
G₃: 3rd Residual Graph







G₄: 4th residual graph



Flow Applications

Applications of Max Flow

Many!

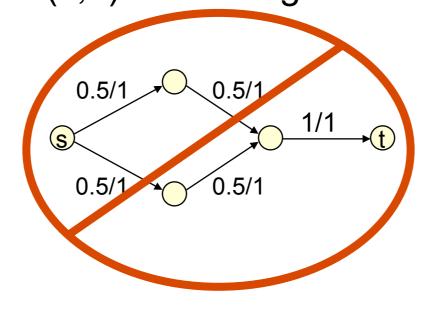
- Most look nothing like flow, at least superficially, but are deeply connected
- Several interesting examples in 7.5-7.13

(7.8-7.11, 7.13 are optional, but interesting. Airline scheduling and image segmentation are especially recommended.)

A few more in following slides

Flow Integrality Theorem

Useful facts: If all capacities are integers
» Some max flow has an integer value
» Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)



A valid flow, but unnecessary

7.6: Disjoint Paths

Given a digraph with designated nodes s,t, are there k edge-disjoint paths from s to t? You might try depth-first search; you might fail... You might instead try "Is max flow $\geq k$?" Success! Max-flow/min-cut also implies max number of edge disjoint paths = min number of edges whose removal separates s from t. Many variants: node-disjoint, undirected, ...

See 7.6

7.5: Bipartite Maximum Matching



Bipartite Graphs: G = (V, E) $V = L \cup R \ (L \cap R = \emptyset)$ $E \subseteq L \times R$

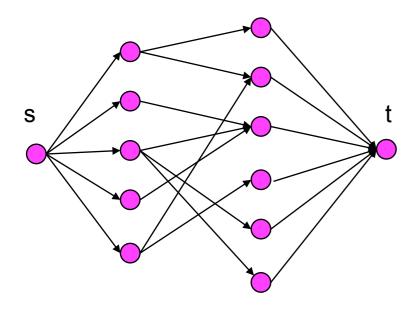
Matching:

A set of edges $M \subseteq E$ such that no two edges touch a common vertex

Problem:

Find a max size matching *M*

Reducing Matching to Flow



Given bipartite *G*, build flow network *N* as follows:

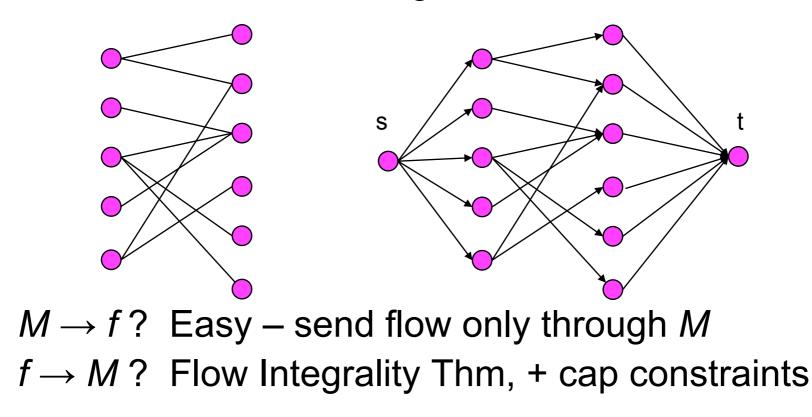
- Add source s, sink t
- Add edges $s \rightarrow L$
- Add edges $R \rightarrow t$
- All edge capacities 1

Theorem:

Max flow iff max matching

Reducing Matching to Flow

Theorem: Max matching size = max flow value



Notes on Matching

Max Flow Algorithm is probably overly general here

But most direct matching algorithms use "augmenting path"-type ideas similar to that in max flow – See text (& homework?)

Time *mn*^{1/2} possible via Edmonds-Karp

7.12 Baseball Elimination

Some slides by Kevin Wayne

Baseball Elimination

Теа	Team		Wins Losses		Against = g _{ij}				
i		W _i	I_i	\boldsymbol{g}_i	Atl	Phi	NY	Mon	
Atla	nta	83	71	8	-	1	6	1	
Phi	Philly		79	3	1	-	0	2	
New `	York	78	78	6	6	0	-	0	
Mont	real	77	82	3	1	2	0	-	

Which teams have a chance of finishing the season with most wins?

- » Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83.
- » $w_i + g_i < w_j \Rightarrow \text{team } i \text{ eliminated.}$
- » Only reason sports writers appear to be aware of.
- » Sufficient, but not necessary!

Baseball Elimination

Team	Wins	Losses	To play	Against = g _{ij}				
i	W _i	I_i	\boldsymbol{g}_i	Atl	Phi	NY	Mon	
Atlanta	83	71	8	-	1	6	1	
Philly	80	79	3	1	-	0	2	
New York	78	78	6	6	0	-	0	
Montreal	77	82	3	1	2	0	-	

Which teams have a chance of finishing the season with most wins?

- » Philly can win 83, but still eliminated . . .
- » If Atlanta loses a game, then some other team wins one.

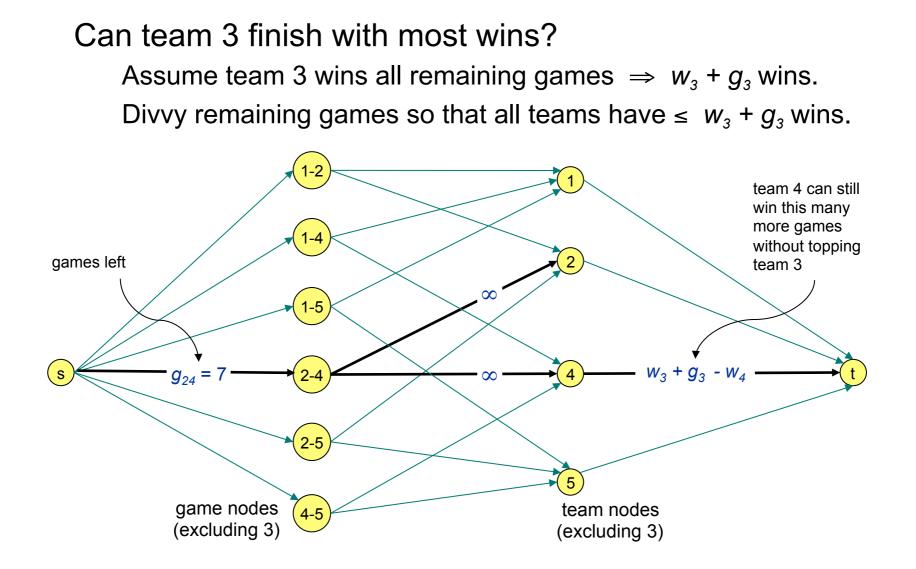
Remark. Depends on *both* how many games already won and left to play, *and* on which opponents.

Baseball Elimination

Baseball elimination problem.

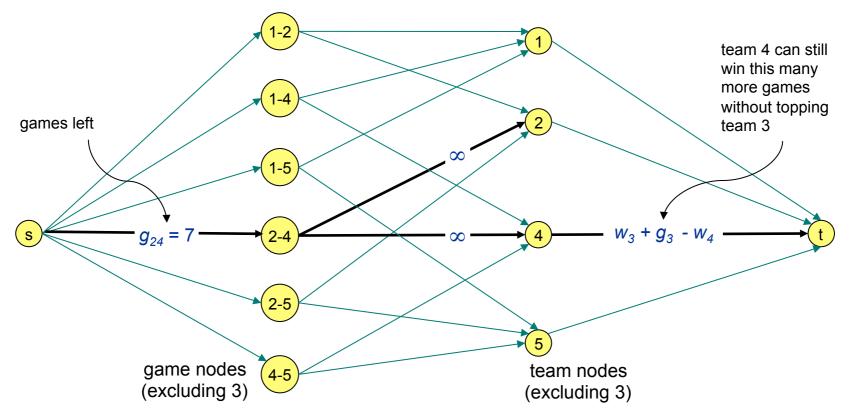
- » Set of teams S.
- » Distinguished team $s \in S$.
- » Team x has won w_x games already.
- » Teams x and y play each other g_{xy} additional times.
- » Is there any outcome of the remaining games in which team s finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation



Baseball Elimination: As Max Flow

Integrality \Rightarrow each remaining *x* : *y* game added to # wins for *x* or *y*. Capacity on (*x*, *t*) edges ensure no team wins too many games. In max flow, unsaturated source edge = unplayed game; if played, (either) winner would push ahead of team 3



Team	Wins	Losses	To play	Against = g_{ij}				
i	W _i	I_i	\boldsymbol{g}_i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Team	Wins	Vins Losses To play Against =				= g _{ij}		
i	W _i	l l _i	9 _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams could finish the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}

Have already won w(R) = 278 games.

Must win at least r(R) = 27 more.

Average team in R wins at least 305/4 > 76 games.

$$\overbrace{\begin{array}{c} \text{Certificate of} \\ \text{elimination} \end{array}}^{\# \text{ wins}} T \subseteq S, \ w(T) \coloneqq \overbrace{\sum_{i \in T} w_i}^{\# \text{ wins}}, \ g(T) \coloneqq \overbrace{\begin{array}{c} x, y \\ y \\ y \\ x \\ y \\ y \\ y \end{array}}^{\# \text{ remaining games}},$$

If
$$\frac{w(T) + g(T)}{|T|} > w_z + g_z$$
 then z eliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T^* that eliminates z.

Proof idea. Let T^* = teams on source side of min cut.

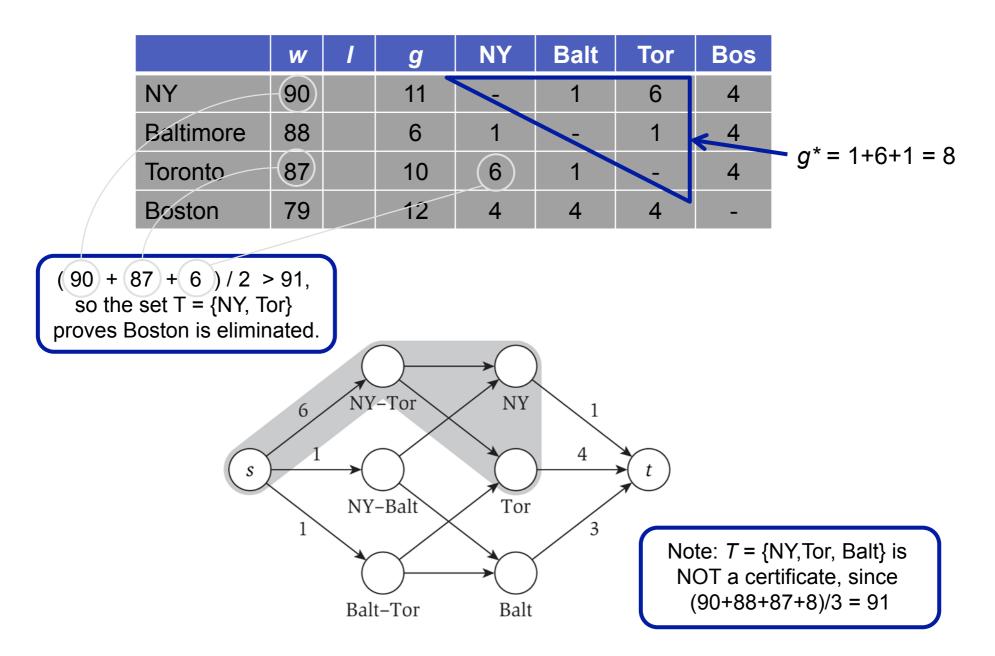
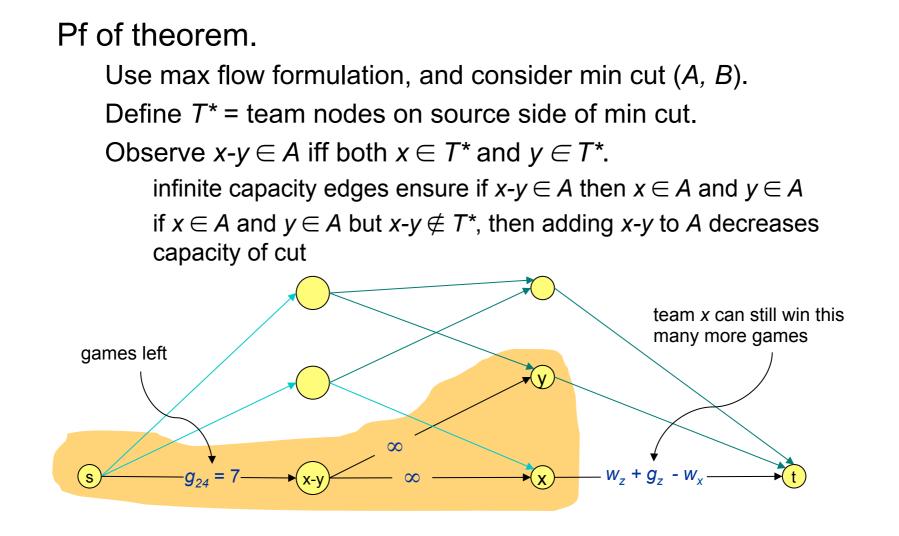


Fig 7.21 Min cut \Rightarrow no flow of value g^* , so Boston eliminated.



Pf of theorem.

Use max flow formulation, and consider min cut (A, B).

Define T^* = team nodes on source side of min cut.

Observe $x - y \in A$ iff both $x \in T^*$ and $y \in T^*$.

 $g(S-\{z\}) > cap(A, B)$

$$= g(S - \{z\}) - g(T^*) + \sum_{x \in T^*} (w_z + g_z - w_x)$$
$$= g(S - \{z\}) - g(T^*) - w(T^*) + |T^*|(w_z + g_z)$$
Rearranging:
$$w(T^*) + g(T^*)$$

 $w_z + g_z < \frac{w(T^*) + g(T^*)}{|T^*|}$

Matching & Baseball: Key Points

Can (sometimes) take problems that seemingly have *nothing* to do with flow & reduce them to a flow problem

How? Build a clever network; map allocation of *stuff* in original problem (match edges; wins) to allocation of *flow* in network. Clever edge capacities constrain solution to mimic original problem in some way. Integrality useful.

Matching & Baseball: Key Points

Furthermore, in the baseball example, min cut can be translated into a succinct *certificate* or *proof* of some property that is much more transparent than "see, I ran max-flow and it says flow must be less than g^* ".

These examples suggest why max flow is so important – *it's a very general tool used in many other algorithms*.