CSE 421
Introduction to Algorithms

The Network Flow Problem

The Network Flow Problem

How much stuff can flow from s to t?

Soviet Rail Network, 1955

SRIGHNS

Reference: On the history of the transportation and maximum flow problems. 3
Alexander Schrijver in Math Programming, 91: 3, 2002.

Net Flow: Formal Definition

Given: Find:
A digraph G = (V,E) A flow function f. Vx V— R s.i.,
. . for all u,v:
Two vertices s,tin V
(S = source, { = Sink) — flu,v) = c(u,v) [Capacity Constraint]
— f(u,v) = -(v,u) [Skew Symmetry]

A capacity c¢(u,v) = 0
for each (u,v) € E
(and ¢(u,v) = 0 for all non- Maximizing to\\al flow | 7| = f(s,V)

edges (u,v)) /
Notation:

(technically, not quite the same f(X,Y)= Exexzyevf(x’y)
definition as in the book...)

—ifu= S,t, f(LI, V) =0 [Flow Conservation]

Example: A Flow Function

“flow”/“capacity”, not 0.66...

v v

(22 5y 2B ()

f(s,u) =f(ut) = 2
f(u,s) = f(t,u) = -2 wny?)
f(S,t) — -f(t,S) =0 (In every flow function for this G. Why?)

f(u,vV)=,a/f(uv)=Ffu,s)+f(ut)=-2+2=0

5

Example: A Flow Function

Not shown: f(u,v) if =0
Note: max flow = 4 since fis a flow, |f|=4

Max Flow via
a Greedy Alg?

While there is an
s—tpathin G
Pick such a path, p
Find c,, the min capacity
of any edge in p
Subtract ¢, from all
capacitieson p

Delete edges of
capacity O

/0

g

—

RN
w
N

—_—

;,’;

@

©)

@)

©

Max Flow via a Greedy Alg?

This does NOT always find a max flow:
If you pick s — b — a — tfirst,

Flow stuck at 2, but 3 possible (above).

©CooONOOOGTLPA,WDN -~

Year
1951
1955
1970
1970
1972
1973
1974
1977
1980
1983
1986
1987
1987
1989
1990
1990
1992
1993
1994
1997

A Brief History of Flow

Discoverer(s)
Dantzig

Ford & Fulkerson
Dinitz; Edmonds & Karp
Dinitz

Edmonds & Karp; Dinitz
Dinitz;Gabow
Karzanov
Cherkassky

Galil & Naamad
Sleator & Tarjan
Goldberg &Tarjan
Ahuja & Orlin

Ahuja et al.

Cheriyan & Hagerup
Cheriyan et al.

Alon

King et al.

Phillips & Westbrook
King et al.

Goldberg & Rao

Bound n = # of vertices
O(nsz) m= # of edges
O(nmC) C = Max capacity
O(nm)

O(n m)

O(m |Og C) Source: Goldberg & Rao,
O(nm log C) FOCS ‘97

O(n)

O(n sqrt(zm))

O(nm log” n)

O(nm log n)

O(nm log (n /m))

O(nm + n° log C)

O(nm Ioggn s%rt(log C)/(m+2))

E(nm +n” log” n)

O(n /Iog n)

O(nm + n8/3 log n)

O(nm + n° i)

O(nm(logmn n + log** n)

O(nmglogm/(n log n) n)

O(m log(n /m) log C) ; O(nZ/3 m Iog(nzlm) logC)

212 11 AR H1/2
23)
2/2 b))~ 1 212Xy~ 1/1
(a). 2
(@)
:
.

Greed Revisited

p)

]

vm
{

Residual Capacity

The residual capacity (w.r.t. f) of (u,0) is
cr(u,0) = c(u,v) — f(u,0)

E.Q.
cr(s,0) =7
cr(a,x) =1;
cr(x,a) = 3;

Cf(x,t) = 0 (a saturated edge)

11

Residual Networks
& Augmenting Paths

The residual network (w.r.t. f) is the
graph G,= (V,E;), where

Er=1(wo)]|c(uv)>0}

An augmenting path (w.r.t. f) is a simple
s — t path in G,

12

A Residual Network

residual network: the graph
G; = (V,E;), where
E:={(uyv)|c(uv)>0}

13

An Augmenting Path

augmenting path:
a simple s — t path in G,

14

Lemma 1

If f admits an augmenting path p, then fis
not maximal.

Proof: "obvious” -- augment along p by ¢,
the min residual capacity of p’'s edges.

15

Augmenting A Flow

Augmenting A Flow

new green,
same blue;
what is result?

17

Lemma 1"
Augmented Flows are Flows

If f is a flow & p an augmenting path of capacity c,,
then f " is also a valid flow, where

f(u,v)+c,, if (u,v) inpath p
f'u,v)=1f(@w,v)—c,, if (v,u) inpath p

f(u,v), otherwise
Proof:
a) Flow conservation — easy
b) Skew symmetry — easy

c) Capacity constraints — pretty easy; next slides

Lma 1: Augmented T s, i) inpath p
f'(u,v)=1{f(u,v)—,, if (v,u) inpath p
Flows are Flows

f(u,v), otherwise

f aflow & p an aug path of cap ¢, then /" also a valid flow.
Proof (Capacity constraints):

(u,v), (v,u) not on path: no change

(u,v) on path: Residual Capacity:

f'(wo) = fluv) +c, 0<c,<cfuo)=
< + c(u,v) - f(u,v)
B f (1,0) Cf(u,0) Cap Constraints:
- f(u’v) +c(u,v) _f(u’v) -c(v,u) < f(u,v) < c(u,v)
= ¢(u,v)

f, (U,U) = f(vlu) - Cp
< flvu)

< c(v,u) QED

19

Lemma 1" Example —Case 1

Let (u,v) be any edge in W) D
augmenting path. Note @

c{u,v) = c(u,v) —f(u,v) 2c,>0

Case 1: f(u,v) = 0: Ghofore ™. f(u,v)/c(u,v)).
> 1/).

Add forward flow G...,

:. y .'

20

Lemma 1" Example —Case 2

Case 2: f (u, V) < -Cp_' Gpetore . : flvu)e(vu) — .

f(v,u) = -f(u,v) = ¢, Wyt T v’}

Cancel/redirect
reverse flow

21

??7?

[E.Q.

Lemma 1" Example — Case 3

v

J

. C, =8, f(u,v) =-5] @/)

Lemma 1" Example — Case 3

Case 3: -G, <f(U,v) <0 Goeore " ey

c,>fvu)>0: (" /T~ 7 v

Both:
cancel/redirect
reverse flow
and
add forward flow T) fe(u,)

23

Ford-Fulkerson Method

While G;has an augmenting path,
augment

Questions:
» Does it halt?
» Does it find a maximum flow?
» How fast?

24

Cuts

A partition S,Tof Visacutifs&€ S, te T.
Capacity of cut S,Tis ¢(S,T)= Y c(u,v)
|

ueS
veT sum of caps
of edges

fromStoT

25

Lemma 2

For any flow fand any cut S, T,

t
f

t

ne net flow across the cut equals the total
ow, i.e., |f| =S, T), and

ne net flow across the cut cannot exceed the

capacity of the cut, i.e. f(S,T) < ¢(S,T)

Corollary: 1 Cut Cap =3
Max flow < Min cut 1 Net Flow =1
1 CutCap =2

Net Flow = 1
26

Lemma 2

For any flow fand any cut S, T,
net flow across cut = total flow < cut capacity
Proof:

Track a flow unit. Starts at s, ends at t.
crosses cut an odd # of times; net = 1.

Last crossing uses a 1 Cut Cap =3
Net Flow = 1
forward edge totaled 1 Lrew
in C(S,T)
1 CutCap =2

Net Flow = 1
27

Max Flow / Min Cut Theorem

For any flow f, the following are equivalent
(1) |] =c¢(S, T) for some cut S, T (a min cut)
(2) fis a maximum flow
(3) fadmits no augmenting path

Proof:

(1) = (2): corollary to lemma 2
(2) = (3): contrapositive of lemma 1

28

(3) = (1)

(no aug) = (cut)

S ={ u|dan augmenting path wrf ffromstou}

% r=VvV-§S,y ses, teT

s Forany (u,v)in S x T, 3 an augmenting path
s from sto u, but not to v.

E . (u,v) has 0 residual capacity:

&;’ (u,v) € E = saturated f(u,v) = c(u,v)

3 (v,u) € E = no flow f(u,v) =0 = -f(v,u)

This is true for every edge crossing the cut, i.e.

Fl=FST) =S e Soar fUv) =
EUES,VET,(U,V)EE f(U,V) - EUES,VET,(U,V)EE C(U,V) = C(S’T) 29

Corollaries & Facts

If Ford-Fulkerson terminates, then it's
found a max flow.

It will terminate if ¢(e) integer or rational
(but may not if they're irrational).

However, may take exponential time,
even with integer capacities:

C_ 9 ¢
(= «’0 c=10%, say
C @ C

30

How to Make it Faster

Several ways. Three important ones:

Edmonds-Karp 70; Dinitz ‘70

1t “strongly” poly time alg. (next) T = O(nm?)
“Scaling” [Edmonds-Karp, ‘72; Dinitz '72]

do largest edges first; see text, and below.

if C = max capacity, T = O(m?log C)
Preflow-Push [Goldberg, Tarjan ‘86]

see text T =0(n3)

31

Edmonds-Karp-Dinitz ‘70 Algorithm

Use a shortest augmenting path
(via Breadth First Search in residual graph)

Time: O(n m?)

32

BFS/Shortest Path Lemmas

Distance from s is never reduced by:

* Deleting an edge
proof: no new (hence no shorter) path created

* Adding an edge (u,v), provided v is nearer

than u
proof: BFS is unchanged, since v visited before
(u,v) examined

<— a back edge

33

Lemma 3

Let f be a flow, G, the residual graph, and
p a shortest augmenting path. Then no
vertex is closer to s in the new residual

graph Gy, after augmentation along p.

Proof: Augmentation only deletes edges,
adds back edges

34

Augmentation vs BFS

Theorem 2

The Edmonds-Karp-Dinitiz Algorithm
performs O(mn) flow augmentations

Proof:

{u,v} Is critical on augmenting path p if it's
closest to s having min residual capacity.

Won't be critical again until farther from s.
So each edge critical at most n times.

36

Augmentation vs BES Level

0 Gf’ 0

BFS
Level
©n
(@)
@)]
BFS ';i Y,
Level + =
Fr @\w@

Corollary

Edmonds-Karp-Dinitz runs in O(nm?)

38

Example

See “Edmonds-Karp-Dinitz Example” on course web page

39

10 9

O

G: the flow problem

40

10 10

10 10

nOmO

0 9

o

G: the flow problem

10 10

G: BFS layering + Aug Path

41

10 10

10 10

nOmO

0 9

o

G: the flow problem

G: BFS layering + Aug Path

G,: Ist Residual Graph

42

G,: Ist Residual Graph

43

G,: Ist Residual Graph

G,: BFS layering + Aug Path

44

G,: Ist Residual Graph

G,: BFS layering + Aug Path

G,:2nd Residual Graph

45

G,: 2nd Residual Graph

46

G,: 2nd Residual Graph

G,: BFS layering + Aug Path

47

G,: 2nd Residual Graph

G,: BFS layering + Aug Path

Gj3: 3rd Residual Graph

48

Gj3: 3rd Residual Graph

49

G3:BFS
layering +

Aug Path

50

G3: BFS

t 5
o0
c o
[
g
& <
\
9//
4

residual
graph

51

G, 4th

residual
graph

52

10/10 910

10/10 9/10

01

10/10 9/10

10/10 9/9

O

Gg:The Max Flow (19)

G,: 4t
residual
graph

Flow Applications

Applications of Max Flow

Many!
Most look nothing like flow, at least
superficially, but are deeply connected

Several interesting examples in 7.5-7.13

(7.8-7.11, 7.13 are optional, but interesting.
Airline scheduling and image segmentation
are especially recommended.)

A few more in following slides

55

Flow Integrality Theorem

Useful facts: If all capacities are integers
» Some max flow has an integer value

» Ford-Fulkerson method finds a max flow in
which f(u,v) is an integer for all edges (u,v)

A valid flow,
but unnecessary

56

7.6: Disjoint Paths

Given a digraph with designated nodes s,t, are
there k edge-disjoint paths from sto t?

You might try depth-first search; you might fail...
You might instead try “Is max flow = k7" Success!

Max-flow/min-cut also implies max number of
edge disjoint paths = min number of edges
whose removal separates s from t.

Many variants: node-disjoint, undirected, ...
See 7.6

57

7.5: Bipartite Maximum Matching

Bipartite Graphs:
G =(V,E)
V=LUR (LNR=0)
ECL xR

Matching:

A set of edges M C E such
that no two edges touch a
common vertex

Problem:
Find a max size matching M

58

Reducing Matching to Flow

Given bipartite G, build flow
network N as follows:

. Add source s, sink t
t . Add edges s — L

. Add edges R — t

. All edge capacities 1

Theorem:
Max flow iff
max matching

59

Reducing Matching to Flow

Theorem: Max matching size = max flow value

M — f"? Easy - send flow only through M
f— M? Flow Integrality Thm, + cap constraints

60

Notes on Matching

Max Flow Algorithm is probably overly
general here

But most direct matching algorithms use
"augmenting path”-type ideas similar to
that in max flow — See text (& homework?)

Time mn'"? possible via Edmonds-Karp

61

7.12 Baseball Elimination

Some slides by Kevin Wayne

62

Baseball Elimination

Team Wlns Losses To play

-]
__ Monteal BRZEIZ B Rl

Which teams have a chance of finishing the season with
most wins?

» Montreal eliminated since it can finish with at most 80 wins,
but Atlanta already has 83.

» W, +g,<w, = team /eliminated.
» Only reason sports writers appear to be aware of.
» Sufficient, but not necessary!

63

Baseball Elimination

Team Wlns Losses To play

Which teams have a chance of finishing the season with
most wins?

» Philly can win 83, but still eliminated . . .
» If Atlanta loses a game, then some other team wins one.

Remark. Depends on both how many games already
won and left to play, and on which opponents.

64

Baseball Elimination

Baseball elimination problem.
» Set of teams S.
» Distinguished team s &€ S.
» Team x has won w, games already.

» Teams x and y play each other g,,
additional times.

» Is there any outcome of the remaining
games in which team s finishes with the
most (or tied for the most) wins?

65

Baseball Elimination: Max
Flow Formulation

Can team 3 finish with most wins?
Assume team 3 wins all remaining games = w, + g, wins.
Divvy remaining games so that all teams have < w, + g, wins.

team 4 can still
win this many
more games
without topping
team 3

game nodes
(excluding 3)

team nodes

(excluding 3) 66

Baseball Elimination: As Max Flow

Integrality = each remaining x : y game added to # wins for x or y.
Capacity on (x, t) edges ensure no team wins too many games.

In max flow, unsaturated source edge = unplayed game; if played,
(either) winner would push ahead of team 3

team 4 can still
win this many
more games
without topping

games left team 3

team nodes
(excluding 3)

game nodes
(excluding 3)

67

Baseball Elimination:
Explanation for Sports Writers

g IEEI

BEEETTI 40 (86 [27 13 4 [0 0o

AL East: August 30, 1996

Which teams have a chance of finishing the season with
most wins?
Detroit could finish season with 49 + 27 = 76 wins.

68

Baseball Elimination:
Explanation for Sports Writers

9 IEEI

BECETTE 40 (86 [27 Ta 4 [0 0

AL East: August 30, 1996

Which teams could finish the season with most wins?
Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R ={NY, Bal, Bos, Tor}

Have already won w(R) = 278 games.
Must win at least r(R) = 27 more.

Average team in R wins at least 305/4 > 76 games. N

Baseball Elimination:
Explanation for Sports Writers

Certificate of A wins # remaining games
elimination res, wT):= _EET wi o 8(T)= { }Eé’xTy ’
l x,yy &
LB on avg # games won
w(T)+g(T) .
T >w,+&. then z eliminated (by subset T).

\

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated
Iff there exists a subset T that eliminates z.

Proof idea. Let T*=teams on source side of min cut.

70

______w|! g | NY |Bat] Tor Bos

[

so the set T = {NY, Tor}
proves Boston is eliminated.

(90 + 87 + 6)/2 >91,J

NOT a certificate, since

Note: T = {NY,Tor, Balt} is
(90+88+87+8)/3 = 91

J

Fig 7.21 Min cut = no flow of value g* so Boston eliminated.

71

Baseball Elimination:
Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).
Define T* = team nodes on source side of min cut.

Observe x-y € Aiff bothxe T*andy & T".
infinite capacity edges ensure if x-y&€ Athenxc€ Aandye A

if x€Aand y € Abut x-y & T* then adding x-y to A decreases
capacity of cut

team x can still win this
many more games

games left

72

Baseball Elimination:
Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).
Define T* = team nodes on source side of min cut.
Observe x-y € Aiff bothx&e T*and y & T™.

g(S—-1z}) > cap(A, B)

capacity of game edges leaving A capacity of teamAedges leaving A

- gD - + 3 (w.+g-w)

XET*

= 88-{zp)-g@T*) - w(T*) + IT*l(w,+g,)

Rearranging: % %
wovg < MTD+T
| 77| -

Matching & Baseball: Key Points

Can (sometimes) take problems that seemingly
have nothing to do with flow & reduce them to
a flow problem

How? Build a clever network; map allocation of
stuff in original problem (match edges; wins)
to allocation of flow in network. Clever edge
capacities constrain solution to mimic original
problem in some way. Integrality useful.

74

Matching & Baseball: Key Points

Furthermore, in the baseball example, min cut
can be translated into a succinct certificate or
proof of some property that is much more
transparent than “see, | ran max-flow and it
says flow must be less than g™.

These examples suggest why max flow is
so important — it’s a very general tool
used in many other algorithms.

75

